A Third Mode of Repetitive Firing: Self-Regenerative Firing Due to Large Delayed Depolarizations

Author(s):  
W. H. Calvin
Keyword(s):  
2020 ◽  
Vol 12 (570) ◽  
pp. eabc1492
Author(s):  
Lawrence S. Hsieh ◽  
John H. Wen ◽  
Lena H. Nguyen ◽  
Longbo Zhang ◽  
Stephanie A. Getz ◽  
...  

The causative link between focal cortical malformations (FCMs) and epilepsy is well accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we showed that FCM neurons were responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide–gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP concentrations, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not control pyramidal neurons. Ectopic HCN4 expression was dependent on the mechanistic target of rapamycin (mTOR), preceded the onset of seizures, and was also found in diseased neurons in tissue resected from patients with TSC and FCDII. Last, blocking HCN4 channel activity in FCM neurons prevented epilepsy in the mouse model. These findings suggest that HCN4 play a main role in seizure and identify a cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons suggests that gene therapy targeting HCN4 might be effective in reducing seizures in FCDII or TSC.


1999 ◽  
Vol 82 (3) ◽  
pp. 1512-1528 ◽  
Author(s):  
R. Hernández-Pineda ◽  
A. Chow ◽  
Y. Amarillo ◽  
H. Moreno ◽  
M. Saganich ◽  
...  

The globus pallidus plays central roles in the basal ganglia circuitry involved in movement control as well as in cognitive and emotional functions. There is therefore great interest in the anatomic and electrophysiological characterization of this nucleus. Most pallidal neurons are GABAergic projecting cells, a large fraction of which express the calcium binding protein parvalbumin (PV). Here we show that PV-containing pallidal neurons coexpress Kv3.1 and Kv3.2 K+ channel proteins and that both Kv3.1 and Kv3.2 antibodies coprecipitate both channel proteins from pallidal membrane extracts solubilized with nondenaturing detergents, suggesting that the two channel subunits are forming heteromeric channels. Kv3.1 and Kv3.2 channels have several unusual electrophysiological properties when expressed in heterologous expression systems and are thought to play special roles in neuronal excitability including facilitating sustained high-frequency firing in fast-spiking neurons such as interneurons in the cortex and the hippocampus. Electrophysiological analysis of freshly dissociated pallidal neurons demonstrates that these cells have a current that is nearly identical to the currents expressed by Kv3.1 and Kv3.2 proteins in heterologous expression systems, including activation at very depolarized membrane potentials (more positive than −10 mV) and very fast deactivation rates. These results suggest that the electrophysiological properties of native channels containing Kv3.1 and Kv3.2 proteins in pallidal neurons are not significantly affected by factors such as associated subunits or postranslational modifications that result in channels having different properties in heterologous expression systems and native neurons. Most neurons in the globus pallidus have been reported to fire sustained trains of action potentials at high-frequency. Kv3.1–Kv3.2 voltage-gated K+channels may play a role in helping maintain sustained high-frequency repetitive firing as they probably do in other neurons.


1962 ◽  
Vol 45 (6) ◽  
pp. 1163-1179 ◽  
Author(s):  
M. G. F. Fuortes ◽  
Francoise Mantegazzini

Eccentric cells of Limulus respond with repetitive firing to sustained depolarizing currents. Following stimulation with a step of current, latency is shorter than first interval and later intervals increase progressively. A shock of intensity twice threshold can evoke firing 25 msec. after an impulse. But in the same cell, a current step twice rheobase evokes a second impulse more than 50 msec. after the first, and current intensity must be raised to over five times rheobase to obtain a first interval of about 25 msec. Repetitive firing was evoked by means of trains of shocks. With stimuli of moderate intensity, firing was evoked by only some of the shocks and intervals between successive impulses increased with time. This is ascribed to accumulation of refractoriness with successive impulses. Higher frequencies of firing are obtained with shocks of intensity n x threshold than with constant currents of intensity n x rheobase. It is concluded that prolonged currents depress the processes leading to excitation and that (in the cells studied) repetitive firing is controlled both by the after-effects of firing (refractoriness) and by the depressant effects of sustained stimuli (accommodation). Development of subthreshold "graded activity" is an important process leading to excitation of eccentric cells, but is not the principal factor determining frequency of firing in response to constant currents.


1994 ◽  
Vol 72 (3) ◽  
pp. 1127-1139 ◽  
Author(s):  
A. Nambu ◽  
R. Llinas

1. We investigated the electrical properties of globus pallidus neurons intracellularly using brain slices from adult guinea pigs. Three types of neurons were identified according to their intrinsic electrophysiological properties. 2. Type I neurons (59%) were silent at the resting membrane level (-65 +/- 10 mV, mean +/- SD) and generated a burst of spikes, with strong accommodation, to depolarizing current injection. Calcium-dependent low-frequency (1-8 Hz) membrane oscillations were often elicited by membrane depolarization (-53 +/- 8 mV). A low-threshold calcium conductance and an A-current were also identified. The mean input resistance of this neuronal type was 70 +/- 22 M omega. 3. Type II neurons (37%) fired spontaneously at the resting membrane level (-59 +/- 9 mV). Their repetitive firing (< or = 200 Hz) was very sensitive to the amplitude of injected current and showed weak accommodation. Sodium-dependent high-frequency (20-100 Hz) subthreshold membrane oscillations were often elicited by membrane depolarization. This neuronal type demonstrated a low-threshold calcium spike and had the highest input resistance (134 +/- 62 M omega) of the three neuron types. 4. Type III neurons (4%) did not fire spontaneously at the resting membrane level (-73 +/- 5 mV). Their action potentials were characterized by a long duration (2.3 +/- 0.6 ms). Repetitive firing elicited by depolarizing current injection showed weak or no accommodation. This neuronal type had an A-current and showed the lowest input resistance (52 +/- 35 M omega) of the three neuron types. 5. Stimulation of the caudoputamen evoked inhibitory postsynaptic potentials (IPSPs) in Type I and II neurons. In Type II neurons the IPSPs were usually followed by rebound firing. Excitatory postsynaptic potentials and antidromic responses were also elicited in some Type I and II neurons. The estimated conduction velocity of the striopallidal projection was < 1 m/s (Type I neurons, 0.49 +/- 0.37 m/s; Type II neurons, 0.33 +/- 0.13 m/s).


2003 ◽  
Vol 89 (6) ◽  
pp. 3097-3113 ◽  
Author(s):  
Jason S. Rothman ◽  
Paul B. Manis

Using kinetic data from three different K+ currents in acutely isolated neurons, a single electrical compartment representing the soma of a ventral cochlear nucleus (VCN) neuron was created. The K+ currents include a fast transient current ( IA), a slow-inactivating low-threshold current ( ILT), and a noninactivating high-threshold current ( IHT). The model also includes a fast-inactivating Na+ current, a hyperpolarization-activated cation current ( Ih), and 1–50 auditory nerve synapses. With this model, the role IA, ILT, and IHT play in shaping the discharge patterns of VCN cells is explored. Simulation results indicate that IHT mainly functions to repolarize the membrane during an action potential, and IA functions to modulate the rate of repetitive firing. ILT is found to be responsible for the phasic discharge pattern observed in Type II cells (bushy cells). However, by adjusting the strength of ILT, both phasic and regular discharge patterns are observed, demonstrating that a critical level of ILT is necessary to produce the Type II response. Simulated Type II cells have a significantly faster membrane time constant in comparison to Type I cells (stellate cells) and are therefore better suited to preserve temporal information in their auditory nerve inputs by acting as precise coincidence detectors and having a short refractory period. Finally, we demonstrate that modulation of Ih, which changes the resting membrane potential, is a more effective means of modulating the activation level of ILT than simply modulating ILT itself. This result may explain why ILT and Ih are often coexpressed throughout the nervous system.


1995 ◽  
Vol 74 (5) ◽  
pp. 1911-1919 ◽  
Author(s):  
M. A. Parkis ◽  
D. A. Bayliss ◽  
A. J. Berger

1. We used conventional intracellular recording techniques in 400-microns-thick slices from the brain stems of juvenile rats to investigate the action of norepinephrine (NE) on subthreshold and firing properties of hypoglossal motoneurons (HMs). 2. In recordings in current-clamp mode, 50 or 100 microM NE elicited a reversible depolarization accompanied by an increase in input resistance (RN) in all HMs tested (n = 74). In recordings in single-electrode voltage-clamp mode, NE induced a reversible inward current (INE) accompanied by a reduction in input conductance. The average reversal potential for INE was -104 mV. The NE responses could be elicited in a Ca(2+)-free solution containing tetrodotoxin, indicating that they were postsynaptic. 3. The NE response could be blocked by the alpha-adrenoceptor antagonist prazosin, but not by the beta-adrenoceptor antagonist propranolol, and could be mimicked by the alpha 1-adrenoceptor agonist phenylephrine but not by the alpha 2-adrenoceptor agonist UK 14,304 or by the beta-adrenoceptor agonist isoproterenol when alpha-adrenoceptors were blocked. 4. Substitution of barium for calcium in the perfusion solution blocked the increase in RN in response to NE without completely blocking the depolarization. Replacement of sodium chloride with choline chloride in the barium-substituted perfusion solution blocked the remaining depolarization. 5. The neuropeptide thyrotropin-releasing hormone (TRH), which also depolarizes and increases the RN of HMs, occluded the response of HMs to NE. 6. NE altered HM firing properties in three ways: it always lowered the minimum amount of injected current needed to elicit repetitive firing, it increased the slope of the firing frequency versus injected current relation in 8 of 14 cells tested, and it increased the delay from the onset of the depolarizing current pulse to the first evoked spike in all cells tested. 7. We conclude that NE acts directly on alpha 1-adrenoceptors to increase the excitability of HMs. It does this by reducing a barium-sensitive resting potassium current and activating a barium-insensitive inward current carried primarily by sodium ions. A portion of the intracellular pathway for these actions is shared by TRH. In addition, there is evidence that NE alters HM firing patterns by affecting currents that are activated following depolarization.


1994 ◽  
Vol 72 (4) ◽  
pp. 1925-1937 ◽  
Author(s):  
W. J. Spain

1. Intracellular recording from cat Betz cells in vitro revealed a strong correlation between the dominant effect of serotonin (5-HT) and the Betz cell subtype in which it occurred. In large Betz cells that show posthyperpolarization excitation (termed PHE cells), 5-HT evoked a long-lasting membrane depolarization, whereas 5-HT evoked an initial hyperpolarization of variable duration in smaller Betz cells that show posthyperpolorization inhibition (termed PHI cells). 2. Voltage-clamp studies revealed that 5-HT caused a depolarizing shift of activation of the cation current Ih, which resulted in the depolarization in PHE cells, whereas the hyperpolarization in PHI cells is caused by an increase in a resting potassium conductance. 3. The effect of 5-HT on firing properties during constant current stimulation also differed consistently in the two types of Betz cells. In PHE cells the initial firing rate increased after 5-HT application, but the steady firing was unaffected. The depolarizing shift of Ih activation caused the increase of initial firing rate. 4. In PHI cells 5-HT caused a decrease in spike frequency adaptation. The decrease in adaptation was caused by a combination of two conductance changes. First, 5-HT caused a slow afterdepolarization in PHI cells that could trigger repetitive firing in the absence of further stimulation. The sADP depended on calcium entry through voltage-gated channels and was associated with a decrease in membrane conductance. Second, 5-HT caused reduction of a slow calcium-dependent potassium current that normally contributes to slow adaptation. 5. In conclusion, the effect of 5-HT on excitability differs systematically in Betz cell subtypes in part because they have different dominant ionic mechanisms that are modulated. If we assume that PHE cells and PHI cells represent fast and slow pyramidal tract (PT) neurons respectively, 5-HT will cause early recruitment of fast PT cells and delay recruitment of slow PT cells during low levels of synaptic excitation.


1993 ◽  
Vol 69 (4) ◽  
pp. 1338-1349 ◽  
Author(s):  
L. Ziskind-Conhaim ◽  
B. S. Seebach ◽  
B. X. Gao

1. Motoneuron responses to serotonin (5-hydroxytryptamine, 5-HT), and the growth pattern of 5-HT projections into the ventral horn were studied in the isolated spinal cord of embryonic and neonatal rats. 2. 5-HT projections first appeared in lumbar spinal cord at days 16-17 of gestation (E16-E17) and were localized in the lateral and ventral funiculi. By E18, the projections had grown into the ventral horn, and at 1-2 days after birth they were in close apposition to motoneuron somata. 3. At E16-E17, slow-rising depolarizing potentials of 1-4 mV were recorded intracellularly in lumbar motoneurons in response to bath application of 5-HT. These potentials were not apparent after E18; at that time 5-HT generated long-lasting depolarizations with an average amplitude of 6 mV, and an increase of 11% in membrane resistance. Starting at E18, 5-HT also induced high-frequency fast-rising potentials that were blocked by antagonists of glutamate, gamma-aminobutyric acid, and glycine. 4. Motoneuron responses to 5-HT increased significantly after birth, when 5-HT produced an average depolarization of 19 mV and repetitive firing of action potentials. 5. Tetrodotoxin and high Mg2+ did not reduce the amplitude of the long-lasting depolarizations, which suggested that they were produced by direct action of 5-HT on motoneuron membrane. 6. At all developmental ages, 5-HT reduced the amplitude of dorsal root-evoked potentials. The suppressed responses were neither due to 5-HT-induced depolarization nor the result of a decrease in motoneuron excitability. 7. The pharmacological profile of 5-HT-induced potentials was studied with the use of various agonists and antagonists of 5-HT. The findings indicated that the actions of 5-HT on spinal neurons were mediated via multiple 5-HT receptor subtypes. 8. Our results suggested that 5-HT excited spinal neurons before 5-HT projections grew into the ventral horn. The characteristics of 5-HT-induced potentials changed, however, at the time when the density of 5-HT projections increased in the motor nuclei.


1979 ◽  
Vol 42 (2) ◽  
pp. 476-496 ◽  
Author(s):  
R. D. Traub ◽  
R. Llinas

1. Starting with published data derived mainly from hippocampal slice preparations, we have used computer-modeling techniques to study hippocampal pyramidal cells (HPCs). 2. The dendrites of the HPC apparently have a short electrotonic length. Calcium spikes are apparently generated by a voltage-dependent mechanism whose kinetics are slow in comparison with those generating sodium spikes of the soma. Inward calcium currents are assumed to trigger a long-lasting potassium conductance. This slow calcium-potassium system, which in our model is located predominantly on the dendrites, provides a heuristic model to describe the mechanism for a) the after-depolarization following an HPC soma (sodium) spike, b) the long afterhyperpolarization following repetitive firing, c) bursts of spikes that sometimes occur after orthodromic or antidromic stimulation, and d) the buildup of the "depolarizing shift" during the strong synaptic input presumed to occur during seizures. 3. Fast prepotentials or d-spikes are shown to arise most probably from dendritic "hot spots" of sodium-regenerative membrane. The limited amplitude and short duration of these prepotentials imply that the hot spots are located on small dendrites. 4. Dendritic electroresponsiveness, first postulated for the HPC by Spencer and Kandel (52), is analyzed quantitatively here and is shown to provide rich integrative possibilities for this cell. Our model suggests that, for these nerve cells, alterations in specific membrane properties, particularly calcium electroresponsiveness, can lead to bursting behavior that resembles epileptogenic neuronal responses.


1975 ◽  
Vol 38 (4) ◽  
pp. 922-932 ◽  
Author(s):  
J. A. Connor

1. Repetitive activity and membrane conductance parameters of crab walking leg axons have been studied in the double sucrose gap. 2. The responses to constant current stimulus could be classified into three catagories; highly repetitive with wide firing frequency range, type I; highly repetitive with narrow frequency range, type II; and nonrepetitive or repetitive to only a limited degree, type III. The minimum firing frequency for type I axons was much greater than for other recording techniques. 3. Voltage-clamp currents in type III axons were qualitatively similar to those of squid or lobster axon. 4. The outward membrane currents of type I and II axons showed a transient phase in addition to the usual delayed current. The magnitude of this transient was a function of both the holding and test voltages. 5. The direction of the transient current reversed in potassium-rich saline. 6. The type I repetitive response in the walking leg axons appears to be generated by the same types of conductance changes that have been demonstrated in molluscan central neurons.


Sign in / Sign up

Export Citation Format

Share Document