Role of gene amplification in drug resistance

Author(s):  
Patricia V. Schoenlein
2015 ◽  
Vol 227 (06/07) ◽  
Author(s):  
J Fabian ◽  
J Ridinger ◽  
O Witt ◽  
I Oehme
Keyword(s):  

2020 ◽  
Vol 27 ◽  
Author(s):  
Ramarao Malla ◽  
Mohammad Amjad Kamal

: Cervical cancer (CC) is the fourth leading cancer in women in the age group 15-44 globally. Experimental as well as epidemiological studies identified that type16 and 18 HPV cause 70% of precancerous cervical lesions as well as cervical cancer worldwide by bringing about genetic as well as epigenetic changes in the host genome. The insertion of the HPV genome triggers various defense mechanisms including the silencing of tumor suppressor genes as well as activation of oncogenes associated with cancer metastatic pathway. E6 and E7 are small oncoproteins consisting of 150 and 100 amino acids respectively. These oncoproteins affect the regulation of the host cell cycle by interfering with p53 and pRb. Further these oncoproteins adversely affect the normal functions of the host cell by binding to their signaling proteins. Recent studies demonstrated that E6 and E7 oncoproteins are potential targets for CC. Therefore, this review discusses the role of E6 and E7 oncoproteins in metastasis and drug resistance as well as their regulation, early oncogene mediated signaling pathways. This review also uncovers the recent updates on molecular mechanisms of E6 and E7 mediated phytotherapy, gene therapy, immune therapy, and vaccine strategies as well as diagnosis through precision testing. Therefore, understanding the potential role of E6/E7 in metastasis and drug resistance along with targeted treatment, vaccine, and precision diagnostic strategies could be useful for the prevention and treatment of cervical cancer.


2019 ◽  
Vol 20 (12) ◽  
pp. 1217-1226 ◽  
Author(s):  
Arunaksharan Narayanankutty

Background: Phosphoinositide 3-kinase (PI3Ks) is a member of intracellular lipid kinases and involved in the regulation of cellular proliferation, differentiation and survival. Overexpression of the PI3K/Akt/mTOR signalling has been reported in various forms of cancers, especially in colorectal cancers (CRC). Due to their significant roles in the initiation and progression events of colorectal cancer, they are recognized as a striking therapeutic target. Objective: The present review is aimed to provide a detailed outline on the role of PI3K/Akt/mTOR pathway in the initiation and progression events of colorectal cancers as well as its function in drug resistance. Further, the role of PI3K/Akt/mTOR inhibitors alone and in combination with other chemotherapeutic drugs, in alleviating colorectal cancer is also discussed. The review contains preclinical and clinical evidence as well as patent literature of the pathway inhibitors which are natural and synthetic in origin. Methods: The data were obtained from PubMed/Medline databases, Scopus and Google patent literature. Results: PI3K/Akt/mTOR signalling is an important event in colorectal carcinogenesis. In addition, it plays significant roles in acquiring drug resistance as well as metastatic initiation events of CRCs. Several small molecules of natural and synthetic origin have been found to be potent inhibitors of CRCs by effectively downregulating the pathway. Data from various clinical studies also support these pathway inhibitors and several among them are patented. Conclusion: Inhibitors of the PI3K/mTOR pathway have been successful for the treatment of primary and metastatic colorectal cancers, rendering the pathway as a promising clinical cancer therapeutic target.


2018 ◽  
Vol 18 (7) ◽  
pp. 1054-1063 ◽  
Author(s):  
Ning Ding ◽  
Hong Zhang ◽  
Shan Su ◽  
Yumei Ding ◽  
Xiaohui Yu ◽  
...  

Background: Endometrial cancer is a common cause of death in gynecological malignancies. Cisplatin is a clinically chemotherapeutic agent. However, drug-resistance is the primary cause of treatment failure. Objective: Emodin is commonly used clinically to increase the sensitivity of chemotherapeutic agents, yet whether Emodin promotes the role of Cisplatin in the treatment of endometrial cancer has not been studied. Method: CCK-8 kit was utilized to determine the growth of two endometrial cancer cell lines, Ishikawa and HEC-IB. The apoptosis level of Ishikawa and HEC-IB cells was detected by Annexin V / propidium iodide double-staining assay. ROS level was detected by DCFH-DA and NADPH oxidase expression. Expressions of drug-resistant genes were examined by real-time PCR and Western blotting. Results: Emodin combined with Cisplatin reduced cell growth and increased the apoptosis of endometrial cancer cells. Co-treatment of Emodin and Cisplatin increased chemosensitivity by inhibiting the expression of drugresistant genes through reducing the ROS levels in endometrial cancer cells. In an endometrial cancer xenograft murine model, the tumor size was reduced and animal survival time was increased by co-treatment of Emodin and Cisplatin. Conclusion: This study demonstrates that Emodin enhances the chemosensitivity of Cisplatin on endometrial cancer by inhibiting ROS-mediated expression of drug-resistance genes.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lei Yin ◽  
Xiaotian Liu ◽  
Xuejun Shao ◽  
Tao Feng ◽  
Jun Xu ◽  
...  

AbstractLung cancer is the leading cause of cancer-associated deaths accounting for 24% of all cancer deaths. As a crucial phase of tumor progression, lung cancer metastasis is linked to over 70% of these mortalities. In recent years, exosomes have received increasing research attention in their role in the induction of carcinogenesis and metastasis in the lung. In this review, recent studies on the contribution of exosomes to lung cancer metastasis are discussed, particularly highlighting the role of lung tumor-derived exosomes in immune system evasion, epithelial-mesenchymal transition, and angiogenesis, and their involvement at both the pre-metastatic and metastatic phases. The clinical application of exosomes as therapeutic drug carriers, their role in antitumor drug resistance, and their utility as predictive biomarkers in diagnosis and prognosis are also presented. The metastatic activity, a complex multistep process of cancer cell invasion, survival in blood vessels, attachment and subsequent colonization of the host's organs, is integrated with exosomal effects. Exosomes act as functional mediating factors in cell–cell communication, influencing various steps of the metastatic cascade. To this end, lung cancer cell-derived exosomes enhance cell proliferation, angiogenesis, and metastasis, regulate drug resistance, and antitumor immune activities during lung carcinogenesis, and are currently being explored as an important component in liquid biopsy assessment for diagnosing lung cancer. These nano-sized extracellular vesicles are also being explored as delivery vehicles for therapeutic molecules owing to their unique properties of biocompatibility, circulatory stability, decreased toxicity, and tumor specificity. The current knowledge of the role of exosomes highlights an array of exosome-dependent pathways and cargoes that are ripe for exploiting therapeutic targets to treat lung cancer metastasis, and for predictive value assessment in diagnosis, prognosis, and anti-tumor drug resistance.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2878
Author(s):  
Claudia Maria Hattinger ◽  
Maria Pia Patrizio ◽  
Leonardo Fantoni ◽  
Chiara Casotti ◽  
Chiara Riganti ◽  
...  

High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1792
Author(s):  
Debashri Manna ◽  
Devanand Sarkar

Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3949
Author(s):  
Federica Rascio ◽  
Federica Spadaccino ◽  
Maria Teresa Rocchetti ◽  
Giuseppe Castellano ◽  
Giovanni Stallone ◽  
...  

The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.


Blood ◽  
2014 ◽  
Vol 124 (13) ◽  
pp. 2061-2071 ◽  
Author(s):  
Zhiqiang Liu ◽  
Jingda Xu ◽  
Jin He ◽  
Yuhuan Zheng ◽  
Haiyan Li ◽  
...  

Key Points CD138+ MM cells are a major source of SHH. Autocrine SHH enhances MM drug resistance.


Sign in / Sign up

Export Citation Format

Share Document