Proposals to Conserve Important Species Names in Aspergillus and Penicillium

Author(s):  
J. C. Frisvad ◽  
D. L. Hawksworth ◽  
Z. Kozakiewicz ◽  
J. I. Pitt ◽  
R. A. Samson ◽  
...  
Keyword(s):  
Author(s):  
R. A. Nunamaker ◽  
C. E. Nunamaker ◽  
B. C. Wick

Culicoides variipennis (Coquillett) is probably the most economically important species of biting midge in the U.S. due to its involvement in the transmission of bluetongue (BT) disease of sheep, cattle and ruminant wildlife, and epizootic hemorrhagic disease (EHD) of deer. Proposals have been made to recognize the eastern and western populations of this insect vector as distinct species. Others recommend use of the term “variipennis complex” until such time that the necessary biosystematic studies have been made to determine the genetic nature and/or minute morphological differences within the population structure over the entire geographic range of the species. Increasingly, students of ootaxonomy are relying on scanning electron microscopy (SEM) to assess chorionic features. This study was undertaken to provide comparative chorionic data for the C. variipennis complex.Culicoides variipennis eggs were collected from a laboratory colony maintained in Laramie, Wyoming.


2020 ◽  
Vol 637 ◽  
pp. 117-140 ◽  
Author(s):  
DW McGowan ◽  
ED Goldstein ◽  
ML Arimitsu ◽  
AL Deary ◽  
O Ormseth ◽  
...  

Pacific capelin Mallotus catervarius are planktivorous small pelagic fish that serve an intermediate trophic role in marine food webs. Due to the lack of a directed fishery or monitoring of capelin in the Northeast Pacific, limited information is available on their distribution and abundance, and how spatio-temporal fluctuations in capelin density affect their availability as prey. To provide information on life history, spatial patterns, and population dynamics of capelin in the Gulf of Alaska (GOA), we modeled distributions of spawning habitat and larval dispersal, and synthesized spatially indexed data from multiple independent sources from 1996 to 2016. Potential capelin spawning areas were broadly distributed across the GOA. Models of larval drift show the GOA’s advective circulation patterns disperse capelin larvae over the continental shelf and upper slope, indicating potential connections between spawning areas and observed offshore distributions that are influenced by the location and timing of spawning. Spatial overlap in composite distributions of larval and age-1+ fish was used to identify core areas where capelin consistently occur and concentrate. Capelin primarily occupy shelf waters near the Kodiak Archipelago, and are patchily distributed across the GOA shelf and inshore waters. Interannual variations in abundance along with spatio-temporal differences in density indicate that the availability of capelin to predators and monitoring surveys is highly variable in the GOA. We demonstrate that the limitations of individual data series can be compensated for by integrating multiple data sources to monitor fluctuations in distributions and abundance trends of an ecologically important species across a large marine ecosystem.


2018 ◽  
Vol 14 (1) ◽  
pp. 10-24
Author(s):  
V. N. Fursov ◽  
L. S. Cherney

Darkling beetle Zophobas atratus (Coleoptera, Tenebrionidae) is recorded here for the first time as a new species for the fauna of Ukraine. Detailed study on morphology of preimaginal stages and biology of this species recently introduced to Ukraine, is given here. Zophobas atratus is an important species being easily reared in laboratory cultures and widely distributed in North and South America, Europe, and Asia. Detailed descriptions of all life stages, including egg, young and older larvae, pupa and adult of Z. atratus are required for further taxonomical study of the genus Zophobas, which isn’t yet definitively established. New identification keys for adults and larvae of the genera of tribe Tenebrionini are presented here, based on a comparative analysis of the taxonomic characters of adults and larvae of Z. atratus and species from the genera Tenebrio and Neatus. Comparative analysis of morphology of larva of Z. atratus and larvae of the tribe Cteniopodini of close subfamily Alleculinae was conducted here. The subfamily Alleculinae previously had the rank of family Alleculidae, but our analysis confirmed the reliability of its current taxonomic position as subfamily. The study of morphology of larvae of 1st and 2nd instars of Z. atratus revealed that they are characterized by special taxonomic structures that are not characteristic for oldest instars of larvae of Z. atratus. These characters include absence of spines on caudal segment, presence of a set of 4 setae at posterior margin of tergites of prothorax, metathorax, and 1st to 8th abdominal segments, strongly convex 2nd antennal segment and sensory zone in the form of an open ring on its apex, and etc. Moreover, structure of antenna of larvae of Z. atratus is similar to that of oldest larvae of most species of darkling beetles of the fauna of Ukraine. The most distinctive features of Z. atratus are: sexual dimorphism in structure of clypeus of adults; filiform sclerotized antenna of larva with a continuous sensory zone at apex of 2nd segment, weakly developed 3rd segment; fusion of sclerotized pleurites of 1st–8th abdominal segments with their tergites; sexual dimorphism in structure of 9th abdominal segment of pupa, and presence of two hooks on apex of its appendages. The data of original study of features of life cycle of Z. atratus are given. The pictures and photos of details of morphology of egg, larvae, pupa and adult of Z. atratus are presented. It was recored that life cycle of Z. atratus from laying of egg to the emergence of adult continues from 169 up to 181 days. Adults lived maximum up to 206 days. Maturation of eggs in female after copulation continues 10-11 days. Stage of egg continues 7 days, larva – up to 151 days, including pre-pupal period from 6 to 22 days, pupa – from 8 to 21 days. Twelve larval stages of Z. atratus were recorded in laboratory culture.


2020 ◽  
Vol 28 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Samuel Lvončík ◽  
Radomír Řepka

There are seven endemic species of Boswellia Roxb. ex Colebr. on Socotra Island, Yemen. Boswellia socotrana Balf. f. is a culturally, economically, and ecologically important species on the island. The name Odina aspleniifolia Balf. f. has been considered as a synonym, but there are morphological differences between the two taxa sufficient to justify their distinction at subspecific rank. Therefore, O. aspleniifolia is transferred to Boswellia as B. socotrana subsp. aspleniifolia (Balf. f.) Lvončik. A lectotype is designated for O. aspleniifolia. The distribution and ecology of both subspecies are discussed, as is their conservation status.


1992 ◽  
Vol 26 (12) ◽  
pp. 2705-2709 ◽  
Author(s):  
H. M. Austin

The Chesapeake Bay, while a significant habitat for fisheries resources, is in actuality an aquatic “bedroom community”, as many of the economically important species are seasonally transient. The pressure on these resources due to their demand for human consumption and recreation, proximity to extensive industrial activity along the shores, and climate scale environmental fluctuations has resulted in stock declines by most important species. Our inability to separate natural population fluctuations from those of anthropogenic origin complicates management efforts. The only way to make these separations, and subsequent informed management decisions is by supporting long-term stock assessment programs (monitoring) in the Bay which allow us to examine trends, cycles and stochastic processes between resource and environment. These programs need to monitor both recruitment and fishing mortality rates of the economically important species, and to identify and monitor the environmentally sensitive “canary” species.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Parisa Soltan-Alinejad ◽  
Javad Rafinejad ◽  
Farrokh Dabiri ◽  
Piero Onorati ◽  
Olle Terenius ◽  
...  

Abstract Objectives Annually, 1.2 million humans are stung by scorpions and severely affected by their venom. Some of the scorpion species of medical importance have a similar morphology to species with low toxicity. To establish diagnostic tools for surveying scorpions, the current study was conducted to generate three mitochondrial markers, Cytochrome Oxidase I (COI gene), 12S rDNA and 16S rDNA for six species of medically important Iranian scorpions: Androctonus crassicauda, Hottentotta saulcyi, Mesobuthus caucasicus, M. eupeus, Odontobuthus doriae, and Scorpio maurus. Results Phylogenetic analyses of the obtained sequences corroborated the morphological identification. For the first time, 12S rDNA sequences are reported from Androctonus crassicauda, Hottentotta saulcyi, Mesobuthus caucasicus and M. eupeus and also the 16S rDNA sequence from Hottentotta saulcyi. We conclude that the mitochondrial markers are useful for species determination among these medically important species of scorpions.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 787-809 ◽  
Author(s):  
Maria-Teresa Cervera ◽  
Véronique Storme ◽  
Bart Ivens ◽  
Jaqueline Gusmão ◽  
Ben H Liu ◽  
...  

Abstract Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 × P. nigra cv. Ghoy and P. deltoides cv. S9-2 × P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.


2021 ◽  
Vol 13 (14) ◽  
pp. 8060
Author(s):  
Mehmet Ramazan Bozhuyuk ◽  
Sezai Ercisli ◽  
Neva Karatas ◽  
Halina Ekiert ◽  
Hosam O. Elansary ◽  
...  

The Rosa is one of the most diverse genera in the plant kingdom and, in particular, its fruits have been used for multiple purposes in different parts of the world for centuries. Within the genus, Rosa canina and Rosa dumalis are, economically, the most important species and dominate Rosa fruit production. In this study, some important fruit and shrub traits of ten Rosa canina and ten Rosa dumalis ecotypes collected from rural areas of Kars province, located in the east Anatolia region of Turkey were investigated. We found significant differences among ecotypes in most of the morphological and biochemical traits. The ecotypes were found between 1446–2210 m altitude. Fruit weight and fruit flesh ratio ranged from 2.95 g to 4.72 g and 62.55% to 74.42%, respectively. SSC (Soluble Solid Content), Vitamin C, total phenolic, total flavonoid, total carotenoid, and total anthocyanin content of the ecotypes ranged from 16.9–22.7%, 430–690 mg per 100 g FW (fresh weight), 390–532 mg gallic acid equivalent per 100 g FW, 0.88–2.04 mg per g FW, 6.83–15.17 mg per g FW and 3.62–7.81 mg cyanidin-3-glucoside equivalent per kg, respectively. Antioxidant activity was determined to be between 19.7–34.7 mg ascorbic acid equivalent per g fresh weight. Rosa ecotypes contained chlorogenic acid and rutin the most as phenolic compound. Our results indicated great diversity within both R. canina and R. dumalis fruits.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
David P Marancik ◽  
Justin R Perrault ◽  
Lisa M Komoroske ◽  
Jamie A Stoll ◽  
Kristina N Kelley ◽  
...  

Abstract Evaluating sea turtle health can be challenging due to an incomplete understanding of pathophysiologic responses in these species. Proteome characterization of clinical plasma samples can provide insights into disease progression and prospective biomarker targets. A TMT-10-plex-LC–MS/MS platform was used to characterize the plasma proteome of five, juvenile, green turtles (Chelonia mydas) and compare qualitative and quantitative protein changes during moribund and recovered states. The 10 plasma samples yielded a total of 670 unique proteins. Using ≥1.2-fold change in protein abundance as a benchmark for physiologic upregulation or downregulation, 233 (34.8%) were differentially regulated in at least one turtle between moribund and recovered states. Forty-six proteins (6.9%) were differentially regulated in all five turtles with two proteins (0.3%) demonstrating a statistically significant change. A principle component analysis showed protein abundance loosely clustered between moribund samples or recovered samples and for turtles that presented with trauma (n = 3) or as intestinal floaters (n = 2). Gene Ontology terms demonstrated that moribund samples were represented by a higher number of proteins associated with blood coagulation, adaptive immune responses and acute phase response, while recovered turtle samples included a relatively higher number of proteins associated with metabolic processes and response to nutrients. Abundance levels of 48 proteins (7.2%) in moribund samples significantly correlated with total protein, albumin and/or globulin levels quantified by biochemical analysis. Differentially regulated proteins identified with immunologic and physiologic functions are discussed for their possible role in the green turtle pathophysiologic response and for their potential use as diagnostic biomarkers. These findings enhance our ability to interpret sea turtle health and further progress conservation, research and rehabilitation programs for these ecologically important species.


Author(s):  
Christopher N Rooper ◽  
Ivonne Ortiz ◽  
Albert J Hermann ◽  
Ned Laman ◽  
Wei Cheng ◽  
...  

Abstract Climate-related distribution shifts for marine species are, in general, amplified in northern latitudes. The objective of this study was to predict future distributions of commercially important species in the eastern Bering Sea under six climate scenarios, by incorporating predictions of future oceanographic conditions. We used species distribution modelling to determine potential distribution changes in four time periods (2013–2017, 2030–2039, 2060–2069, and 2090-2099) relative to 1982–2012 for 16 marine fish and invertebrates. Most species were predicted to have significant shifts in the centre of gravity of the predicted abundance, the area occupied, and the proportion of the predicted abundance found in the standard bottom trawl survey area. On average the shifts were modest, averaging 35.2 km (ranging from 1 to 202 km). There were significant differences in the predicted trend for distribution metrics among climate scenarios, with the most extensive changes in distribution resulting from Representative Concentration Pathway 8.5 climate scenarios. The variability in distributional shifts among years and climate scenarios was high, although the magnitudes were low. This study provides a basis for understanding where fish populations might expand or contract in future years. This will provide managers’ information that can help guide appropriate actions under warming conditions.


Sign in / Sign up

Export Citation Format

Share Document