Immunohistochemical Analysis of Opioid Receptors in Peripheral Tissues

Author(s):  
Yvonne Schmidt ◽  
Halina Machelska
2012 ◽  
Vol 50 (2) ◽  
pp. 115-129 ◽  
Author(s):  
Roger López-Bellido ◽  
Katherine Barreto-Valer ◽  
Raquel E Rodríguez

Opioid and tachykinin receptors (TACRs) are closely related in addiction and pain processes. In zebrafish, opioid receptors have been cloned and characterized both biochemically and pharmacologically. However, thetacr1gene has not yet been described in zebrafish. The aim of this research was to identify thetacr1gene, study the effects of cocaine ontacr1, and analyze the interaction betweentacr1and opioid receptors. We have identified a duplicate oftacr1gene in zebrafish, designated astacr1aandtacr1b. Phylogenetic analyses revealed an alignment of these receptors in the Tacr1 fish cluster, with a clear distinction from other TACR1s of amphibians, birds, and mammals. Our qPCR results showed thattacr1aandtacr1bmRNAs are expressed during embryonic development. Whole-mountin situhybridization showedtacr1expression in the CNS and in the peripheral tissues. Cocaine (1.5 μM) induced an upregulation oftacr1aandtacr1bat 24 and 48 h post-fertilization (hpf; except fortacr1aat 48 hpf, which was downregulated). By contrast, HEK-293 cells transfected withtacr1aandtacr1band exposed to cocaine showed a downregulation oftacr1s. The knockdown of ZfDOR2 and ZfMOR, opioid receptors, induced a down- and upregulation oftacr1aandtacr1brespectively. In conclusion,tacr1aandtacr1bin zebrafish are widely expressed throughout the CNS and peripherally, suggesting a critical role of thesetacr1sduring embryogenesis.tacr1aandtacr1bmRNA expression is altered by cocaine exposure and by the knockdown of opioid receptors. Thus, zebrafish can provide clues for a better understanding of the relationship between tachykinin and opioid receptors in pain and addiction during embryonic development.


2020 ◽  
Vol 20 ◽  
Author(s):  
Kimberly Alonge ◽  
Rick Harkewicz ◽  
Miklos Guttman

: Chondroitin sulfate (CS)-glycosaminoglycans (GAGs) are linear, negatively charged polysaccharides attached to CS proteoglycans that make up a major component of biological matrices throughout both central and peripheral tissues. The position of their attached sulfate groups to the CS disaccharide is predicted to influence protein-glycan interactions and biological function. Although traditional immunohistochemical analysis of CS-GAGs in biological tissues have provided information regarding changes in GAG abundance during developmental and disease states, quantitative analysis of their specific sulfation patters is limited due to the inherent complexity of separating CS isomers. While methods have been developed to analyze and quantify sulfation isomers using liquid phase separation, new techniques are still needed to elucidate the full biology of CS-GAGs. Here we examine ion mobility spectrometry and gas-phase hydrogen deuterium exchange to resolve positional sulfation isomers in the most common sulfated 4S- and 6S-CS disaccharides. The mobilities for these two isomers are highly similar and could not be resolved effectively with any drift gas tested. In contrast, gas-phase hydrogen deuterium exchange showed very different rates of deuterium uptake with several deuterium exchange reagents, presenting a promising novel and rapid approach for resolving CS isomers.


2020 ◽  
Vol 318 (5) ◽  
pp. R917-R928 ◽  
Author(s):  
Jithine Jayakumar Rajeswari ◽  
Ayelén Melisa Blanco ◽  
Suraj Unniappan

Phoenixin is a 20-amino acid peptide (PNX-20) cleaved from the small integral membrane protein 20 (SMIM20), with multiple biological roles in mammals. However, its role in nonmammalian vertebrates is poorly understood. This research aimed to determine whether PNX-20 influences feeding and metabolism in zebrafish. The mRNAs encoding SMIM20 and its putative receptor, super conserved receptor expressed in brain 3 (SREB3), are present in both central and peripheral tissues of zebrafish. Immunohistochemical analysis confirmed the presence of PNX-like immunoreactivity in the gut and in zebrafish liver (ZFL) cell line. We also found that short-term fasting (7 days) significantly decreased smim20 mRNA expression in the brain, gut, liver, gonads, and muscle, which suggests a role for PNX-20 in food intake regulation. Indeed, single intraperitoneal injection of 1,000 ng/g body wt PNX-20 reduced feeding in both male and female zebrafish, likely in part by enhancing hypothalamic cart and reducing hypothalamic/gut preproghrelin mRNAs. Furthermore, the present results demonstrated that PNX-20 modulates the expression of genes involved in glucose transport and metabolism in ZFL cells. In general terms, such PNX-induced modulation of gene expression was characterized by the upregulation of glycolytic genes and the downregulation of gluconeogenic genes. A kinetic study of the ATP production rate from both glycolytic and mitochondrial pathways demonstrated that PNX-20-treated ZFL cells exhibited significantly higher ATP production rate associated with glycolysis than control cells. This confirms a positive role for PNX-20 on glycolysis. Together, these results indicate that PNX-20 is an anorexigen with important metabolic roles in zebrafish.


2004 ◽  
Vol 286 (4) ◽  
pp. R634-R641 ◽  
Author(s):  
Jason J. McDougall ◽  
A. Kursat Barin ◽  
Chelsea M. McDougall

Endomorphin-1 is a short-chain neuropeptide with a high affinity for the μ-opioid receptor and has recently been localized in acutely inflamed knee joints where it was found to reduce inflammation. The present study examined the propensity of endomorphin-1 to modulate synovial blood flow in normal and adjuvant-inflamed rat knee joints. Under deep urethane anesthesia, endomorphin-1 was topically applied to exposed normal and 1 wk adjuvant monoarthritic knee joints (0.1 ml bolus; 10-12-10-9 mol). Relative changes in articular blood flow were measured by laser Doppler perfusion imaging and vascular resistances in response to the opioid were calculated. In normal knees, endomorphin-1 caused a dose-dependent increase in synovial vascular resistance and this effect was significantly inhibited by the specific μ-opioid receptor antagonist d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr amide (CTOP) ( P < 0.0001, 2-factor ANOVA, n = 5-7). One week after adjuvant inflammation, the hypoaemic effect of endormophin-1 was completely abolished ( P < 0.0001, 2-factor ANOVA, n = 5-7). Immunohistochemical analysis of normal and adjuvant-inflamed joints showed a ninefold increase in endomorphin-1 levels in the monoarthritic knee compared with normal control. Western blotting and immunohistochemistry revealed a moderate number of μ-opioid receptors in normal knees; however, μ-opioid receptors were almost undetectable in arthritic joints. These findings demonstrate that peripheral administration of endomorphin-1 reduces knee joint blood flow and this effect is not sustainable during advanced inflammation. The loss of this hypoaemic response appears to be due to downregulation of μ-opioid receptors as a consequence of endomorphin-1 accumulation within the arthritic joint.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qing Liu ◽  
Hongwen He ◽  
Lijia Mai ◽  
Shengyan Yang ◽  
Wenguo Fan ◽  
...  

The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hauke Simon Günther ◽  
Stephan Henne ◽  
Jasmin Oehlmann ◽  
Julia Urban ◽  
Desiree Pleizier ◽  
...  

AbstractRecently, we found many immune cells including antigen presenting cells neurally hard wired in the T-cell zone of most lymphoid organs like amongst others, lymph nodes in rats, mice and humans. Single immune cells were reached by single neurites and enclosed with a dense neural meshwork. As it is well known that axons are always accompanied by glial cells, we were able to identify Schwann cells in the hilum, medullary and capsule region, like expected. Unexpected was the result, that we found oligodendrocyte-like cells in these regions, myelinating more than one axon. Likewise important was the finding, that one of the standard glial markers used, a polyclonal GFAP antibody equally bound to desmin and therefore marked nearly all stromal cells in cortical, paracortical and medullary cord regions. More detailed analysis showed that these results also appeared in many other non-lymphoid organs. Therefore, polyclonal GFAP antibodies are only conditionally usable for immunohistochemical analysis in peripheral tissues outside the central nervous system. It remains to be elucidated, if the binding of the GFAP antibody to desmin has its reason in a special desmin variant that can give stromal cells glial character.


2004 ◽  
Vol 181 (2) ◽  
pp. 233-244 ◽  
Author(s):  
T Takarada ◽  
E Hinoi ◽  
VJ Balcar ◽  
H Taniura ◽  
Y Yoneda

Neither expression nor functionality is clear in peripheral tissues with the molecular machineries required for excitatory neurotransmitter signaling by L-glutamate (Glu) in the central nervous system, while a recent study has shown that several Glu receptors are functionally expressed in the rat testis. This fact prompted us to explore the possible functional expression in the rat testis of the Glu transporters usually responsible for the regulation of extracellular Glu concentrations in the brain. RT-PCR revealed the expression, in the rat testis, of mRNA for five different subtypes of Glu transporters, in addition to that for particular subtypes of ionotropic and metabotropic Glu receptors. Glutamate transporter-1 (GLT-1) was different in the brain from that in the testis in terms of molecular sizes on Northern and Western blot analyses. In situ hybridization as well as immunohistochemical analysis showed localized expression of glutamate aspartate transporter at interstitial spaces and GLT-1 at elongated spermatids in the rat testis respectively. The expression of mRNA was localized for excitatory amino acid transporter-5 at the basal compartment of the seminiferous tubule in the rat testis. [(3)H]Glu was accumulated in testicular crude mitochondrial fractions in a temperature- and sodium-dependent saturable manner with pharmacological profiles similar to those shown in brain crude mitochondrial fractions. These results suggested that particular subtypes of central Glu transporters for the regulation of extracellular Glu concentrations in the rat testis could be constitutively and functionally expressed.


Sign in / Sign up

Export Citation Format

Share Document