scholarly journals Phoenixin-20 suppresses food intake, modulates glucoregulatory enzymes, and enhances glycolysis in zebrafish

2020 ◽  
Vol 318 (5) ◽  
pp. R917-R928 ◽  
Author(s):  
Jithine Jayakumar Rajeswari ◽  
Ayelén Melisa Blanco ◽  
Suraj Unniappan

Phoenixin is a 20-amino acid peptide (PNX-20) cleaved from the small integral membrane protein 20 (SMIM20), with multiple biological roles in mammals. However, its role in nonmammalian vertebrates is poorly understood. This research aimed to determine whether PNX-20 influences feeding and metabolism in zebrafish. The mRNAs encoding SMIM20 and its putative receptor, super conserved receptor expressed in brain 3 (SREB3), are present in both central and peripheral tissues of zebrafish. Immunohistochemical analysis confirmed the presence of PNX-like immunoreactivity in the gut and in zebrafish liver (ZFL) cell line. We also found that short-term fasting (7 days) significantly decreased smim20 mRNA expression in the brain, gut, liver, gonads, and muscle, which suggests a role for PNX-20 in food intake regulation. Indeed, single intraperitoneal injection of 1,000 ng/g body wt PNX-20 reduced feeding in both male and female zebrafish, likely in part by enhancing hypothalamic cart and reducing hypothalamic/gut preproghrelin mRNAs. Furthermore, the present results demonstrated that PNX-20 modulates the expression of genes involved in glucose transport and metabolism in ZFL cells. In general terms, such PNX-induced modulation of gene expression was characterized by the upregulation of glycolytic genes and the downregulation of gluconeogenic genes. A kinetic study of the ATP production rate from both glycolytic and mitochondrial pathways demonstrated that PNX-20-treated ZFL cells exhibited significantly higher ATP production rate associated with glycolysis than control cells. This confirms a positive role for PNX-20 on glycolysis. Together, these results indicate that PNX-20 is an anorexigen with important metabolic roles in zebrafish.

2021 ◽  
Vol 7 (2) ◽  
pp. 123
Author(s):  
Tongfei Lai ◽  
Yangying Sun ◽  
Yaoyao Liu ◽  
Ran Li ◽  
Yuanzhi Chen ◽  
...  

Penicillium expansum is a major postharvest pathogen that mainly threatens the global pome fruit industry and causes great economic losses annually. In the present study, the antifungal effects and potential mechanism of cinnamon oil against P. expansum were investigated. Results indicated that 0.25 mg L−1 cinnamon oil could efficiently inhibit the spore germination, conidial production, mycelial accumulation, and expansion of P. expansum. In addition, it could effectively control blue mold rots induced by P. expansum in apples. Cinnamon oil could also reduce the expression of genes involved in patulin biosynthesis. Through a proteomic quantitative analysis, a total of 146 differentially expressed proteins (DEPs) involved in the carbohydrate metabolic process, most of which were down-regulated, were noticed for their large number and functional significance. Meanwhile, the expressions of 14 candidate genes corresponding to DEPs and the activities of six key regulatory enzymes (involving in cellulose hydrolyzation, Krebs circle, glycolysis, and pentose phosphate pathway) showed a similar trend in protein levels. In addition, extracellular carbohydrate consumption, intracellular carbohydrate accumulation, and ATP production of P. expansum under cinnamon oil stress were significantly decreased. Basing on the correlated and mutually authenticated results, we speculated that disturbing the fungal carbohydrate metabolic process would be partly responsible for the inhibitory effects of cinnamon oil on P. expansum growth. The findings would provide new insights into the antimicrobial mode of cinnamon oil.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Li Miao ◽  
Qing Li ◽  
Tian-shu Sun ◽  
Sen Chai ◽  
Changlin Wang ◽  
...  

AbstractThe use of heterografts is widely applied for the production of several important commercial crops, but the molecular mechanism of graft union formation remains poorly understood. Here, cucumber grafted onto pumpkin was used to study graft union development, and genome-wide tempo-spatial gene expression at the graft interface was comprehensively investigated. Histological analysis suggested that resumption of the rootstock growth occurred after both phloem and xylem reconnection, and the scion showed evident callus production compared with the rootstock 3 days after grafting. Consistently, transcriptome data revealed specific responses between the scion and rootstock in the expression of genes related to cambium development, the cell cycle, and sugar metabolism during both vascular reconnection and healing, indicating distinct mechanisms. Additionally, lower levels of sugars and significantly changed sugar enzyme activities at the graft junction were observed during vascular reconnection. Next, we found that the healing process of grafted etiolated seedlings was significantly delayed, and graft success, xylem reconnection, and the growth of grafted plants were enhanced by exogenous glucose. This demonstrates that graft union formation requires the correct sugar content. Furthermore, we also found that graft union formation was delayed with a lower energy charge by the target of rapamycin (TOR) inhibitor AZD-8055, and xylem reconnection and the growth of grafted plants were enhanced under AZD-8055 with exogenous glucose treatment. Taken together, our results reveal that sugars play a positive role in graft union formation by promoting the growth of cucumber/pumpkin and provide useful information for understanding graft union healing and the application of heterografting in the future.


2011 ◽  
Vol 212 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Megan N Purpera ◽  
Li Shen ◽  
Marzieh Taghavi ◽  
Heike Münzberg ◽  
Roy J Martin ◽  
...  

Elevation of dietary or brain leucine appears to suppress food intake via a mechanism involving mechanistic target of rapamycin, AMPK, and/or branched chain amino acid (BCAA) metabolism. Mice bearing a deletion of mitochondrial branched chain aminotransferase (BCATm), which is expressed in peripheral tissues (muscle) and brain glia, exhibit marked increases in circulating BCAAs. Here, we test whether this increase alters feeding behavior and brain neuropeptide expression. Circulating and brain levels of BCAAs were increased two- to four-fold in BCATm-deficient mice (KO). KO mice weighed less than controls (25.9 vs 20.4 g,P<0.01), but absolute food intake was relatively unchanged. In contrast to wild-type mice, KO mice preferred a low-BCAA diet to a control diet (P<0.05) but exhibited no change in preference for low- vs high-protein (HP) diets. KO mice also exhibited low leptin levels and increased hypothalamicNpyandAgrpmRNA. Normalization of circulating leptin levels had no effect on either food preference or the increasedNpyandAgrpmRNA expression. If BCAAs act as signals of protein status, one would expect reduced food intake, avoidance of dietary protein, and reduction in neuropeptide expression in BCATm-KO mice. Instead, these mice exhibit an increased expression of orexigenic neuropeptides and an avoidance of BCAAs but not HP. These data thus suggest that either BCAAs do not act as physiological signals of protein status or the loss of BCAA metabolism within brain glia impairs the detection of protein balance.


2017 ◽  
Vol 114 (40) ◽  
pp. E8478-E8487 ◽  
Author(s):  
Masahiro Konishi ◽  
Masaji Sakaguchi ◽  
Samuel M. Lockhart ◽  
Weikang Cai ◽  
Mengyao Ella Li ◽  
...  

Insulin receptors (IRs) on endothelial cells may have a role in the regulation of transport of circulating insulin to its target tissues; however, how this impacts on insulin action in vivo is unclear. Using mice with endothelial-specific inactivation of the IR gene (EndoIRKO), we find that in response to systemic insulin stimulation, loss of endothelial IRs caused delayed onset of insulin signaling in skeletal muscle, brown fat, hypothalamus, hippocampus, and prefrontal cortex but not in liver or olfactory bulb. At the level of the brain, the delay of insulin signaling was associated with decreased levels of hypothalamic proopiomelanocortin, leading to increased food intake and obesity accompanied with hyperinsulinemia and hyperleptinemia. The loss of endothelial IRs also resulted in a delay in the acute hypoglycemic effect of systemic insulin administration and impaired glucose tolerance. In high-fat diet-treated mice, knockout of the endothelial IRs accelerated development of systemic insulin resistance but not food intake and obesity. Thus, IRs on endothelial cells have an important role in transendothelial insulin delivery in vivo which differentially regulates the kinetics of insulin signaling and insulin action in peripheral target tissues and different brain regions. Loss of this function predisposes animals to systemic insulin resistance, overeating, and obesity.


1993 ◽  
Vol 265 (3) ◽  
pp. R481-R486 ◽  
Author(s):  
Y. Hirosue ◽  
A. Inui ◽  
A. Teranishi ◽  
M. Miura ◽  
M. Nakajima ◽  
...  

To examine the mechanism of the satiety-producing effect of cholecystokinin (CCK) in the central nervous system, we compared the potency of intraperitoneally (ip) or intracerebroventricularly (icv) administered CCK-8 and its analogues on food intake in fasted mice. The icv administration of a small dose of CCK-8 (0.03 nmol/brain) or of Suc-(Thr28, Leu29, MePhe33)-CCK-7 (0.001 nmol/brain) suppressed food intake for 20 min, whereas CCK-8 (1 nmol/kg, which is equivalent to 0.03 nmol/brain) or Suc-(Thr28, Leu29, MePhe33)-CCK-7 (1 nmol/kg) had satiety effect after ip administration. Dose-response studies indicated the following rank order of potency: Suc-CCK-7 > or = Suc-(Thr28, Leu29, MePhe33)-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of ip administration and Suc-(Thr28, Leu29, MePhe33)-CCK-7 >> Suc-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of icv administration. The selective CCK-A receptor antagonist MK-329 reversed the inhibitory effect of the centrally as well as peripherally administered CCK-8, or of Suc-(Thr28, Leu29, MePhe33)-CCK-7, whereas the selective CCK-B receptor antagonist L-365260 did not. The icv administered CCK-8 did not appear in the peripheral circulation. These findings suggest the participation of CCK-A receptors in the brain in mediating the satiety effect of CCK and the difference in CCK-A receptors in the brain and peripheral tissues.


2013 ◽  
Vol 305 (4) ◽  
pp. E507-E518 ◽  
Author(s):  
S. Nausheen ◽  
I. H. Shah ◽  
A. Pezeshki ◽  
D. L. Sigalet ◽  
P. K. Chelikani

Bariatric surgeries are hypothesized to produce weight loss and improve diabetes control by multiple mechanisms including gastric restriction and lower gut stimulation; the relative importance of these mechanisms remains poorly understood. We compared the effects of a typical foregut procedure, sleeve gastrectomy, (SG) with a primarily hindgut surgery, ileal transposition (IT), alone and together (SGIT), or sham manipulations, on food intake, body weight, gut hormones, glucose tolerance, and key markers of glucose homeostasis in peripheral tissues of adult male Sprague-Dawley rats (450–550 g, n = 7–9/group). SG, IT, and SGIT surgeries produced transient reduction in food intake and weight gain; the effects of SG and IT on intake and body weight were nonadditive. SG, IT, and SGIT surgeries resulted in increased tissue expression and plasma concentrations of the lower gut hormones glucagon-like peptide-1 and peptide YY and decreased plasma glucose-dependent insulinotropic peptide, insulin, and leptin concentrations. Despite transient effects on intake and weight gain, the SG, IT, and SGIT surgeries produced a significant improvement in glucose tolerance. In support of glycemic improvements, the protein abundance of key markers of glucose metabolism (e.g., GLUT4, PKA, IRS-1) in muscle and adipose tissue were increased, whereas the expression of key gluconeogenic enzyme in liver (G-6-Pase) were decreased following the surgeries. Therefore, our data suggest that enhanced lower gut stimulation following SG, IT, and SGIT surgeries leads to transient reduction in food intake and weight gain together with enhanced secretion of lower gut hormones and improved glucose clearance by peripheral tissues.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12164
Author(s):  
César Canché-Collí ◽  
Humberto Estrella-Maldonado ◽  
Luis A. Medina-Medina ◽  
Humberto Moo-Valle ◽  
Luz Maria Calvo-Irabien ◽  
...  

Nutrition is vital for health and immune function in honey bees (Apis mellifera). The effect of diets enriched with bee-associated yeasts and essential oils of Mexican oregano (Lippia graveolens) was tested on survival, food intake, accumulated fat body tissue, and gene expression of vitellogenin (Vg), prophenoloxidase (proPO) and glucose oxidase (GOx) in newly emerged worker bees. The enriched diets were provided to bees under the premise that supplementation with yeasts or essential oils can enhance health variables and the expression of genes related to immune function in worker bees. Based on a standard pollen substitute, used as a control diet, enriched diets were formulated, five with added bee-associated yeasts (Starmerella bombicola, Starmerella etchellsii, Starmerella bombicola 2, Zygosaccharomyces mellis, and the brewers’ yeast Saccharomyces cerevisiae) and three with added essential oils from L. graveolens (carvacrol, thymol, and sesquiterpenes). Groups of bees were fed one of the diets for 9 or 12 days. Survival probability was similar in the yeast and essential oils treatments in relation to the control, but median survival was lower in the carvacrol and sesquiterpenes treatments. Food intake was higher in all the yeast treatments than in the control. Fat body percentage in individual bees was slightly lower in all treatments than in the control, with significant decreases in the thymol and carvacrol treatments. Expression of the genes Vg, proPO, and GOx was minimally affected by the yeast treatments but was adversely affected by the carvacrol and thymol treatments.


Obesity ◽  
2007 ◽  
Vol 15 (3) ◽  
pp. 607-615 ◽  
Author(s):  
Adrian M. Stütz ◽  
Jaroslaw Staszkiewicz ◽  
Andrey Ptitsyn ◽  
George Argyropoulos

Author(s):  
Pryce L. Haddix

ABSTRACT Serratia marcescens is a prolific producer of the red, membrane-associated pigment prodigiosin. Earlier work has established both a positive role for prodigiosin in ATP production during population lag phase and a negative role during high-rate, low cell density growth. This study uses the growth rate and growth phase modulation afforded by chemostat culture to extend prodigiosin functional analysis to the high density and stationary phases. Cellular levels of prodigiosin were positively associated with cellular levels of ATP during high-density growth, and artificial pigment induction during this phase increased cellular ATP. Following peak high density ATP per cell, early stationary phase enabled significant population growth while prodigiosin levels remained high and ATP declined. During late stationary phase, ATP per cell was positively associated with prodigiosin per cell while both declined during continued growth. These results provide correlational evidence for multiple effects of prodigiosin pigment on ATP production throughout the growth cycle. Earlier work and the data presented here enable formulation of a working model for the oscillating relationships between cellular levels of ATP and prodigiosin during batch culture.


2020 ◽  
Vol 21 (7) ◽  
pp. 2568
Author(s):  
Ujendra Kumar ◽  
Sneha Singh

Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.


Sign in / Sign up

Export Citation Format

Share Document