Cell-Death Mechanisms in Neurodegenerative Diseases

2003 ◽  
pp. 211-224
Author(s):  
R. Anne Stetler ◽  
Jun Chen

2010 ◽  
Vol 9 (6) ◽  
pp. 679-692 ◽  
Author(s):  
Ricardo J.S. Viana ◽  
Maria B. Fonseca ◽  
Rita M. Ramalho ◽  
Ana F. Nunes ◽  
Cecilia M.P. Rodrigues


2018 ◽  
Vol 19 (10) ◽  
pp. 3082 ◽  
Author(s):  
Hao Chi ◽  
Hui-Yun Chang ◽  
Tzu-Kang Sang

Neuronal cell death in the central nervous system has always been a challenging process to decipher. In normal physiological conditions, neuronal cell death is restricted in the adult brain, even in aged individuals. However, in the pathological conditions of various neurodegenerative diseases, cell death and shrinkage in a specific region of the brain represent a fundamental pathological feature across different neurodegenerative diseases. In this review, we will briefly go through the general pathways of cell death and describe evidence for cell death in the context of individual common neurodegenerative diseases, discussing our current understanding of cell death by connecting with renowned pathogenic proteins, including Tau, amyloid-beta, alpha-synuclein, huntingtin and TDP-43.





2011 ◽  
Vol 49 (01) ◽  
Author(s):  
K Herzer ◽  
G Kneiseler ◽  
F Post ◽  
M Schlattjan ◽  
T Neumann ◽  
...  


2018 ◽  
Vol 74 (11) ◽  
Author(s):  
Gunnur Demircan ◽  
Sule Beyhan Ozdas ◽  
Demet Akin ◽  
Ozgur Kaplan ◽  
Sabri Demircan ◽  
...  


2013 ◽  
Vol 13 (3) ◽  
pp. 414-421 ◽  
Author(s):  
Raquel T. Lima ◽  
Gemma A. Barron ◽  
Joanna A. Grabowska ◽  
Giovanna Bermano ◽  
Simranjeet Kaur ◽  
...  


2021 ◽  
Vol 22 (15) ◽  
pp. 7946
Author(s):  
Chang Youn Lee ◽  
Seahyoung Lee ◽  
Seongtae Jeong ◽  
Jiyun Lee ◽  
Hyang-Hee Seo ◽  
...  

The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1b production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.



Author(s):  
Diane Moujalled ◽  
Andreas Strasser ◽  
Jeffrey R. Liddell

AbstractTightly orchestrated programmed cell death (PCD) signalling events occur during normal neuronal development in a spatially and temporally restricted manner to establish the neural architecture and shaping the CNS. Abnormalities in PCD signalling cascades, such as apoptosis, necroptosis, pyroptosis, ferroptosis, and cell death associated with autophagy as well as in unprogrammed necrosis can be observed in the pathogenesis of various neurological diseases. These cell deaths can be activated in response to various forms of cellular stress (exerted by intracellular or extracellular stimuli) and inflammatory processes. Aberrant activation of PCD pathways is a common feature in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, resulting in unwanted loss of neuronal cells and function. Conversely, inactivation of PCD is thought to contribute to the development of brain cancers and to impact their response to therapy. For many neurodegenerative diseases and brain cancers current treatment strategies have only modest effect, engendering the need for investigations into the origins of these diseases. With many diseases of the brain displaying aberrations in PCD pathways, it appears that agents that can either inhibit or induce PCD may be critical components of future therapeutic strategies. The development of such therapies will have to be guided by preclinical studies in animal models that faithfully mimic the human disease. In this review, we briefly describe PCD and unprogrammed cell death processes and the roles they play in contributing to neurodegenerative diseases or tumorigenesis in the brain. We also discuss the interplay between distinct cell death signalling cascades and disease pathogenesis and describe pharmacological agents targeting key players in the cell death signalling pathways that have progressed through to clinical trials.



Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 539
Author(s):  
Santa Cirmi ◽  
Alessandro Maugeri ◽  
Giovanni Enrico Lombardo ◽  
Caterina Russo ◽  
Laura Musumeci ◽  
...  

Parkinson’s disease (PD) is a degenerative disorder of the nervous system due to unceasing impairment of dopaminergic neurons situated in the substantia nigra. At present, anti-PD drugs acting on dopamine receptors are mainly symptomatic and have only very limited neuroprotective effects, whereas drugs slowing down neurodegeneration of dopaminergic neurons and deterioration of clinical symptoms are not yet available. Given that, the development of more valuable pharmacological strategies is highly demanded. Comprehensive research on innovative neuroprotective drugs has proven that anti-inflammatory and antioxidant molecules from food sources may prevent and/or counteract neurodegenerative diseases, such as PD. The present study was aimed at the evaluation the protective effect of mandarin juice extract (MJe) against 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma cell death. Treatment of differentiated SH-SY5Y cells with 6-OHDA brought cell death, and specifically, apoptosis, which was significantly inhibited by the preincubation with MJe through caspase 3 blockage and the modulation of p53, Bax, and Bcl-2 genes. In addition, it showed antioxidant properties in abiotic models as well as in vitro, where it reduced both reactive oxygen and nitrogen species induced by 6-OHDA, along with restored mitochondrial membrane potential, and prevented the oxidative DNA damage evoked by 6-OHDA. Furthermore, MJe restored the impaired balance of SNCA, LRRK2, PINK1, parkin, and DJ-1 gene levels, PD-related factors, caused by 6-OHDA oxidative stress. Overall, these results indicate that MJe exerts neuroprotective effects against 6-OHDA-induced cell death in SH-SY5Y cells by mechanisms involving both the specific interaction with intracellular pathways and its antioxidant capability. Our study suggests a novel possible strategy to prevent and/or ameliorate neurodegenerative diseases, such as PD.



Sign in / Sign up

Export Citation Format

Share Document