Dysmorphic Growth and Genetic Abnormalities

1998 ◽  
Vol 22 (5) ◽  
pp. 383-395 ◽  
Author(s):  
Pilar Iniesta ◽  
Carmen de Juan ◽  
Trinidad Caldes ◽  
Francisco-Jose Vega ◽  
Maria-Jose Massa ◽  
...  

Author(s):  
Lindsay Schneider ◽  
Anubhav Tripathi

Aneuploidy is caused by problems during cellular division and segregation errors during meiosis that lead to an abnormal number of chromosomes and initiate significant genetic abnormalities during pregnancy or the loss of a fetus due to miscarriage. Screening and diagnostic technologies have been developed to detect this genetic condition and provide parents with critical information about their unborn child. In this review, we highlight the complexities of aneuploidy as a disease as well as multiple technological advancements in testing that help to identify aneuploidy at various time points throughout pregnancy. We focus on aneuploidy diagnosis during preimplantation genetic testing that is performed during in vitro fertilization as well as prenatal screening and diagnosis during pregnancy. This review focuses on DNA-based analysis and laboratory techniques for aneuploidy detection through reviewing molecular- and engineering-based technical advancements. We also present key challenges in aneuploidy detection during pregnancy, including sample collection, mosaic embryos, economic factors, and the social implications of this testing. The goal of this review is to synthesize broad information about aneuploidy screening and diagnostic sample collection and analysis during pregnancy and discuss major challenges the field is still facing despite decades of advancements.


2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Kang Wang ◽  
Weicheng Duan ◽  
Yijie Duan ◽  
Yuxin Yu ◽  
Xiuyi Chen ◽  
...  

Autism spectrum disorder (ASD) cases have increased rapidly in recent decades, which is associated with various genetic abnormalities. To provide a better understanding of the genetic factors in ASD, we assessed the global scientific output of the related studies. A total of 2944 studies published between 1997 and 2018 were included by systematic retrieval from the Web of Science (WoS) database, whose scientific landscapes were drawn and the tendencies and research frontiers were explored through bibliometric methods. The United States has been acting as a leading explorer of the field worldwide in recent years. The rapid development of high-throughput technologies and bioinformatics transferred the research method from the traditional classic method to a big data-based pipeline. As a consequence, the focused research area and tendency were also changed, as the contribution of de novo mutations in ASD has been a research hotspot in the past several years and probably will remain one into the near future, which is consistent with the current opinions of the major etiology of ASD. Therefore, more attention and financial support should be paid to the deciphering of the de novo mutations in ASD. Meanwhile, the effective cooperation of multi-research centers and scientists in different fields should be advocated in the next step of scientific research undertaken.


2015 ◽  
Vol 22 (5) ◽  
pp. 402-406 ◽  
Author(s):  
Peter N. Taylor ◽  
Robin Peeters ◽  
Colin M. Dayan

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chao Guo ◽  
Ya-yue Gao ◽  
Qian-qian Ju ◽  
Chun-xia Zhang ◽  
Ming Gong ◽  
...  

Abstract Background The heterogenous cytogenetic and molecular variations were harbored by AML patients, some of which are related with AML pathogenesis and clinical outcomes. We aimed to uncover the intrinsic expression profiles correlating with prognostic genetic abnormalities by WGCNA. Methods We downloaded the clinical and expression dataset from BeatAML, TCGA and GEO database. Using R (version 4.0.2) and ‘WGCNA’ package, the co-expression modules correlating with the ELN2017 prognostic markers were identified (R2 ≥ 0.4, p < 0.01). ORA detected the enriched pathways for the key co-expression modules. The patients in TCGA cohort were randomly assigned into the training set (50%) and testing set (50%). The LASSO penalized regression analysis was employed to build the prediction model, fitting OS to the expression level of hub genes by ‘glmnet’ package. Then the testing and 2 independent validation sets (GSE12417 and GSE37642) were used to validate the diagnostic utility and accuracy of the model. Results A total of 37 gene co-expression modules and 973 hub genes were identified for the BeatAML cohort. We found that 3 modules were significantly correlated with genetic markers (the ‘lightyellow’ module for NPM1 mutation, the ‘saddlebrown’ module for RUNX1 mutation, the ‘lightgreen’ module for TP53 mutation). ORA revealed that the ‘lightyellow’ module was mainly enriched in DNA-binding transcription factor activity and activation of HOX genes. The ‘saddlebrown’ module was enriched in immune response process. And the ‘lightgreen’ module was predominantly enriched in mitosis cell cycle process. The LASSO- regression analysis identified 6 genes (NFKB2, NEK9, HOXA7, APRC5L, FAM30A and LOC105371592) with non-zero coefficients. The risk score generated from the 6-gene model, was associated with ELN2017 risk stratification, relapsed disease, and prior MDS history. The 5-year AUC for the model was 0.822 and 0.824 in the training and testing sets, respectively. Moreover, the diagnostic utility of the model was robust when it was employed in 2 validation sets (5-year AUC 0.743–0.79). Conclusions We established the co-expression network signature correlated with the ELN2017 recommended prognostic genetic abnormalities in AML. The 6-gene prediction model for AML survival was developed and validated by multiple datasets.


2021 ◽  
Vol 7 (7) ◽  
pp. eabf1798
Author(s):  
A. Murashima-Suginami ◽  
H. Kiso ◽  
Y. Tokita ◽  
E. Mihara ◽  
Y. Nambu ◽  
...  

Uterine sensitization–associated gene-1 (USAG-1) deficiency leads to enhanced bone morphogenetic protein (BMP) signaling, leading to supernumerary teeth formation. Furthermore, antibodies interfering with binding of USAG-1 to BMP, but not lipoprotein receptor–related protein 5/6 (LRP5/6), accelerate tooth development. Since USAG-1 inhibits Wnt and BMP signals, the essential factors for tooth development, via direct binding to BMP and Wnt coreceptor LRP5/6, we hypothesized that USAG-1 plays key regulatory roles in suppressing tooth development. However, the involvement of USAG-1 in various types of congenital tooth agenesis remains unknown. Here, we show that blocking USAG-1 function through USAG-1 knockout or anti–USAG-1 antibody administration relieves congenital tooth agenesis caused by various genetic abnormalities in mice. Our results demonstrate that USAG-1 controls the number of teeth by inhibiting development of potential tooth germs in wild-type or mutant mice missing teeth. Anti–USAG-1 antibody administration is, therefore, a promising approach for tooth regeneration therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yotaro Ochi ◽  
Kenichi Yoshida ◽  
Ying-Jung Huang ◽  
Ming-Chung Kuo ◽  
Yasuhito Nannya ◽  
...  

AbstractBlast crisis (BC) predicts dismal outcomes in patients with chronic myeloid leukaemia (CML). Although additional genetic alterations play a central role in BC, the landscape and prognostic impact of these alterations remain elusive. Here, we comprehensively investigate genetic abnormalities in 136 BC and 148 chronic phase (CP) samples obtained from 216 CML patients using exome and targeted sequencing. One or more genetic abnormalities are found in 126 (92.6%) out of the 136 BC patients, including the RUNX1-ETS2 fusion and NBEAL2 mutations. The number of genetic alterations increase during the transition from CP to BC, which is markedly suppressed by tyrosine kinase inhibitors (TKIs). The lineage of the BC and prior use of TKIs correlate with distinct molecular profiles. Notably, genetic alterations, rather than clinical variables, contribute to a better prediction of BC prognosis. In conclusion, genetic abnormalities can help predict clinical outcomes and can guide clinical decisions in CML.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuma Nakatsuka ◽  
Keisuke Tateishi ◽  
Hiroyuki Kato ◽  
Hiroaki Fujiwara ◽  
Keisuke Yamamoto ◽  
...  

AbstractWhile the significance of acquired genetic abnormalities in the initiation of hepatocellular carcinoma (HCC) has been established, the role of epigenetic modification remains unknown. Here we identified the pivotal role of histone methyltransferase G9a in the DNA damage-triggered initiation of HCC. Using liver-specific G9a-deficient (G9aΔHep) mice, we revealed that loss of G9a significantly attenuated liver tumor initiation caused by diethylnitrosamine (DEN). In addition, pharmacological inhibition of G9a attenuated the DEN-induced initiation of HCC. After treatment with DEN, while the induction of γH2AX and p53 were comparable in the G9aΔHep and wild-type livers, more apoptotic hepatocytes were detected in the G9aΔHep liver. Transcriptome analysis identified Bcl-G, a pro-apoptotic Bcl-2 family member, to be markedly upregulated in the G9aΔHep liver. In human cultured hepatoma cells, a G9a inhibitor, UNC0638, upregulated BCL-G expression and enhanced the apoptotic response after treatment with hydrogen peroxide or irradiation, suggesting an essential role of the G9a-Bcl-G axis in DNA damage response in hepatocytes. The proposed mechanism was that DNA damage stimuli recruited G9a to the p53-responsive element of the Bcl-G gene, resulting in the impaired enrichment of p53 to the region and the attenuation of Bcl-G expression. G9a deletion allowed the recruitment of p53 and upregulated Bcl-G expression. These results demonstrate that G9a allows DNA-damaged hepatocytes to escape p53-induced apoptosis by silencing Bcl-G, which may contribute to the tumor initiation. Therefore, G9a inhibition can be a novel preventive strategy for HCC.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 251
Author(s):  
Alexandra Butzmann ◽  
Jyoti Kumar ◽  
Kaushik Sridhar ◽  
Sumanth Gollapudi ◽  
Robert S. Ohgami

Castleman disease (CD) is a rare lymphoproliferative disorder known to represent at least four distinct clinicopathologic subtypes. Large advancements in our clinical and histopathologic description of these diverse diseases have been made, resulting in subtyping based on number of enlarged lymph nodes (unicentric versus multicentric), according to viral infection by human herpes virus 8 (HHV-8) and human immunodeficiency virus (HIV), and with relation to clonal plasma cells (POEMS). In recent years, significant molecular and genetic abnormalities associated with CD have been described. However, we continue to lack a foundational understanding of the biological mechanisms driving this disease process. Here, we review all cases of CD with molecular abnormalities described in the literature to date, and correlate cytogenetic, molecular, and genetic abnormalities with disease subtypes and phenotypes. Our review notes complex karyotypes in subsets of cases, specific mutations in PDGFRB N666S in 10% of unicentric CD (UCD) and NCOA4 L261F in 23% of idiopathic multicentric CD (iMCD) cases. Genes affecting chromatin organization and abnormalities in methylation are seen more commonly in iMCD while abnormalities within the mitogen-activated protein kinase (MAPK) and interleukin signaling pathways are more frequent in UCD. Interestingly, there is a paucity of genetic studies evaluating HHV-8 positive multicentric CD (HHV-8+ MCD) and POEMS-associated CD. Our comprehensive review of genetic and molecular abnormalities in CD identifies subtype-specific and novel pathways which may allow for more targeted treatment options and unique biologic therapies.


Sign in / Sign up

Export Citation Format

Share Document