Role of Perivascular Adipose Tissue in Vascular Function

2009 ◽  
pp. 175-186 ◽  
Author(s):  
Maria S. Fernández-Alfonso ◽  
Marta Gil-Ortega ◽  
Beatriz Somoza
2020 ◽  
Vol 134 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Samah Ahmadieh ◽  
Ha Won Kim ◽  
Neal L. Weintraub

Abstract Perivascular adipose tissue (PVAT) directly juxtaposes the vascular adventitia and contains a distinct mixture of mature adipocytes, preadipocytes, stem cells, and inflammatory cells that communicate via adipocytokines and other signaling mediators with the nearby vessel wall to regulate vascular function. Cross-talk between perivascular adipocytes and the cells in the blood vessel wall is vital for normal vascular function and becomes perturbed in diseases such as atherosclerosis. Perivascular adipocytes surrounding coronary arteries may be primed to promote inflammation and angiogenesis, and PVAT phenotypic changes occurring in the setting of obesity, hyperlipidemia etc., are fundamentally important in determining a pathogenic versus protective role of PVAT in vascular disease. Recent discoveries have advanced our understanding of the role of perivascular adipocytes in modulating vascular function. However, their impact on cardiovascular disease (CVD), particularly in humans, is yet to be fully elucidated. This review will highlight the complex mechanisms whereby PVAT regulates atherosclerosis, with an emphasis on clinical implications of PVAT and emerging strategies for evaluation and treatment of CVD based on PVAT biology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mengyu Wang ◽  
Junhui Xing ◽  
Mengduan Liu ◽  
Mingming Gao ◽  
Yangyang Liu ◽  
...  

Seipin locates in endoplasmic reticulum (ER) and regulates adipogenesis and lipid droplet formation. Deletion of Seipin has been well-demonstrated to cause severe general lipodystrophy, however, its role in maintaining perivascular adipose tissue (PVAT) and vascular homeostasis has not been directly assessed. In the present study, we investigated the role of Seipin in mediating the anticontractile effect of PVAT and vascular function. Seipin expression in PVAT and associated vessels were detected by qPCR and western-blot. Seipin is highly expressed in PVAT, but hardly in vessels. Structural and functional alterations of PVAT and associated vessels were compared between Seipin−/− mice and WT mice. In Seipin−/− mice, aortic and mesenteric PVAT were significantly reduced in mass and adipose-derived relaxing factors (ADRFs) secretion, but increased in macrophage infiltration and ER stress, as compared with those in WT mice. Aortic and mesenteric artery rings from WT and Seipin−/− mice were mounted on a wire myograph. Vasoconstriction and vasodilation were studied in vessels with and without PVAT. WT PVAT augmented relaxation but not Seipin−/− PVAT, which suggest impaired anticontractile function in PVAT of Seipin−/− mice. Thoracic aorta and mesenteric artery from Seipin−/− mice had impaired contractility in response to phenylephrine (PHE) and relaxation to acetylcholine (Ach). In conclusion, Seipin deficiency caused abnormalities in PVAT morphology and vascular functions. Our data demonstrated for the first time that Seipin plays a critical role in maintaining PVAT function and vascular homeostasis.


2007 ◽  
Vol 151 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Y-J Gao ◽  
C Lu ◽  
L-Y Su ◽  
A M Sharma ◽  
R M K W Lee

2009 ◽  
Vol 10 (2) ◽  
pp. e487
Author(s):  
F Huang ◽  
MA Rosas Lezama ◽  
JA Perez Ontiveros ◽  
E Hong

2010 ◽  
Vol 32 (2) ◽  
pp. 98-104 ◽  
Author(s):  
Fengyang Huang ◽  
Miguel Angel Rosas Lezama ◽  
José Alfredo Pérez Ontiveros ◽  
Guadalupe Bravo ◽  
Santiago Villafaña ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 613
Author(s):  
Valentina Rovella ◽  
Giuseppe Rodia ◽  
Francesca Di Daniele ◽  
Carmine Cardillo ◽  
Umberto Campia ◽  
...  

In the past few decades, obesity has reached pandemic proportions. Obesity is among the main risk factors for cardiovascular diseases, since chronic fat accumulation leads to dysfunction in vascular endothelium and to a precocious arterial stiffness. So far, not all the mechanisms linking adipose tissue and vascular reactivity have been explained. Recently, novel findings reported interesting pathological link between endothelial dysfunction with gut hormones and gut microbiota and energy homeostasis. These findings suggest an active role of gut secretome in regulating the mediators of vascular function, such as nitric oxide (NO) and endothelin-1 (ET-1) that need to be further investigated. Moreover, a central role of brain has been suggested as a main player in the regulation of the different factors and hormones beyond these complex mechanisms. The aim of the present review is to discuss the state of the art in this field, by focusing on the processes leading to endothelial dysfunction mediated by obesity and metabolic diseases, such as insulin resistance. The role of perivascular adipose tissue (PVAT), gut hormones, gut microbiota dysbiosis, and the CNS function in controlling satiety have been considered. Further understanding the crosstalk between these complex mechanisms will allow us to better design novel strategies for the prevention of obesity and its complications.


2005 ◽  
Vol 130 (4) ◽  
pp. 1130-1136 ◽  
Author(s):  
Yu-Jing Gao ◽  
Zhao-hua Zeng ◽  
Kevin Teoh ◽  
Arya M. Sharma ◽  
Labib Abouzahr ◽  
...  

2018 ◽  
Vol 315 (6) ◽  
pp. R1085-R1095 ◽  
Author(s):  
Analia S. Loria ◽  
Frank T. Spradley ◽  
Ijeoma E. Obi ◽  
Bryan K. Becker ◽  
Carmen De Miguel ◽  
...  

Clinical studies have shown that obesity negatively impacts large arteries’ function. We reported that rats exposed to maternal separation (MatSep), a model of early life stress, display enhanced angiotensin II (ANG II)-induced vasoconstriction in aortic rings cleaned of perivascular adipose tissue (PVAT) under normal diet (ND) conditions. We hypothesized that exposure to MatSep promotes a greater loss of PVAT-mediated protective effects on vascular function and loss of blood pressure (BP) rhythm in rats fed a high-fat diet (HFD) when compared with controls. MatSep was performed in male Wistar-Kyoto rats from days 2 to 14 of life. Normally reared littermates served as controls. On ND, aortic rings from MatSep rats with PVAT removed showed increased ANG II-mediated vasoconstriction versus controls; however, rings from MatSep rats with intact PVAT displayed blunted constriction. This effect was exacerbated by an HFD in both groups; however, the anticontractile effect of PVAT was greater in MatSep rats. Acetylcholine-induced relaxation was similar in MatSep and control rats fed an ND, regardless of the presence of PVAT. HFD impaired aortic relaxation in rings without PVAT from MatSep rats, whereas the presence of PVAT improved relaxation in both groups. On an HFD, immunolocalization of vascular smooth muscle-derived ANG-(1–7) and PVAT-derived adiponectin abundances were increased in MatSep. In rats fed an HFD, 24-h BP and BP rhythms were similar between groups. In summary, MatSep enhanced the ability of PVAT to blunt the heightened ANG II-induced vasoconstriction and endothelial dysfunction in rats fed an HFD. This protective effect may be mediated via the upregulation of vasoprotective factors within the adipovascular axis.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Edwyn O. Cruz-López ◽  
Estrellita Uijl ◽  
A.H. Jan Danser

Sign in / Sign up

Export Citation Format

Share Document