Effect of Thermomechanical Treatment on the Central Segregation Heterogeneity and HIC Resistance of Rolled Plates

Author(s):  
Ivan Shabalov ◽  
Yury Matrosov ◽  
Alexey Kholodnyi ◽  
Maxim Matrosov ◽  
Valery Velikodnev
Author(s):  
M.T. Jahn ◽  
J.C. Yang ◽  
C.M. Wan

4340 Ni-Cr-Mo alloy steel is widely used due to its good combination of strength and toughness. The mechanical property of 4340 steel can be improved by various thermal treatments. The influence of thermomechanical treatment (TMT) has been studied in a low carbon Ni-Cr-Mo steel having chemical composition closed to 4340 steel. TMT of 4340 steel is rarely examined up to now. In this study we obtain good improvement on the mechanical property of 4340 steel by TMT. The mechanism is explained in terms of TEM microstructures4340 (0.39C-1.81Ni-0.93Cr-0.26Mo) steel was austenitized at 950°C for 30 minutes. The TMTed specimen (T) was obtained by forging the specimen continuously as the temperature of the specimen was decreasing from 950°C to 600°C followed by oil quenching to room temperature. The thickness reduction ratio by forging is 40%. The conventional specimen (C) was obtained by quenching the specimen directly into room temperature oil after austenitized at 950°C for 30 minutes. All quenched specimens (T and C) were then tempered at 450, 500, 550, 600 or 650°C for four hours respectively.


1987 ◽  
Vol 48 (C3) ◽  
pp. C3-653-C3-659 ◽  
Author(s):  
M. NIINOMI ◽  
K. DEGAWA ◽  
T. KOBAYASHI

2015 ◽  
Vol 6 (3) ◽  
pp. 65
Author(s):  
E. H. Ouakdi ◽  
A. Soualem ◽  
T. Rechidi ◽  
M. Martiny ◽  
G. Ferron

2020 ◽  
pp. 306-308
Author(s):  
V.S. Bochkov

The relevance of the search for solutions to increase the wear resistance of bucket teeth of excavating machine type front shovel is analyzed. The reasons for the wear of the teeth are considered. It is determined that when excavating machines work for rocks of VIII and IX categories, impact-abrasive wear of the inner side of the teeth and abrasive external wear occurs. It is proved that the cold-work hardening of Hadfield steel (the teeth material), which occurs during the excavating machine teeth work in the rocks of VIII and IX categories, reduces the impact-abrasive wear rate on the inner side of the teeth and does not affect the abrasive wear of the outer. The methods for thermomechanical treatment of the outer side of the excavating machine tooth is proposed. It can increase the wear resistance of Hadfield steel (110G13L) up to 1.7 times and lead to the self-sharpening effect of the tooth due to equalization of the wear rate of the outer and inner parts of the tooth. The efficiency factor of thermomechanical treatment to reduce the of abrasive wear rate of Hadfield steel is experimentally proved.


2013 ◽  
Vol 652-654 ◽  
pp. 2450-2454
Author(s):  
Zhi Hong Zhang ◽  
Guo Guang Cheng

The paper describes multi-section round bloom casting using external MEMS, equipped with max section D600mm and min D280mm mold, the center line of D280mm mold not coincident with the axis of stirrer coils. it is exist eccentric electromagnetic stirring of mold which section less than max D600mm, a mathematical model of MEMS has been established, the index of central segregation of D280mm macrostructure had decreased less than 1.12 by optimized parameters of electromagnetic stirring and SEN immerse depth, in the end, the quality of round bloom had improved.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 452
Author(s):  
Dongwei Guo ◽  
Zibing Hou ◽  
Zhiqiang Peng ◽  
Qian Liu ◽  
Jianghai Cao

The statistical correlation was applied to analyze the specific and quantitative correlation relationship between the solidification structure and central segregation along the casting direction in carbon steel billet. On this basis, the segregation formation mechanism of the solute element and related control strategy were investigated. It is found that the equiaxed crystal zone fluctuation along the casting direction determines the fluctuation degree of central segregation. At the same time, the central segregation at a certain position is mostly affected by the equiaxed crystal zone width at the hysteretic position. Moreover, the casting speed can influence the columnar to equiaxed transition (CET) fluctuation along the casting direction by affecting the flow of molten steel in the billet. Overall, the segregation mechanism of solute elements along the casting direction can be summarized into two aspects: First, with the growth of columnar crystals in the initial stage, the segregated solutes are continuously enriched and distributed in the equiaxed crystal zone after CET. The fluctuation of the equiaxed crystal zone will affect the distribution of the enriched solute in the billet and cause the fluctuation of the central segregation. Second, due to the solidification shrinkage at the end of solidification, the solute-enriched liquid phase at the hysteretic position is pumped to the solidification endpoint and forms the central V-shaped segregation. Meanwhile, the stable solidification structure (columnar crystal length or equiaxed crystal zone width) along the casting direction and control measures preceded equiaxed crystal zone formation are beneficial to reduce the central V-shaped segregation.


Sign in / Sign up

Export Citation Format

Share Document