scholarly journals Reactivity of Coke in Relation to Sulfur Level and Microstructure

Author(s):  
Gøril Jahrsengene ◽  
Stein Rørvik ◽  
Arne Petter Ratvik ◽  
Lorentz Petter Lossius ◽  
Richard G. Haverkamp ◽  
...  
Keyword(s):  
2018 ◽  
Vol 63 ◽  
pp. 955-986 ◽  
Author(s):  
Adrian Goldwaser ◽  
Andreas Schutt

We consider the torpedo scheduling problem in steel production, which is concerned with the transport of hot metal from a blast furnace to an oxygen converter. A schedule must satisfy, amongst other considerations, resource capacity constraints along the path and the locations traversed as well as the sulfur level of the hot metal. The goal is first to minimize the number of torpedo cars used during the planning horizon and second to minimize the time spent desulfurizing the hot metal. We propose an exact solution method based on Logic based Benders Decomposition using Mixed-Integer and Constraint Programming, which optimally solves and proves, for the first time, the optimality of all instances from the ACP Challenge 2016 within 10 minutes. In addition, we adapted our method to handle large-scale instances and instances with a more general rail network. This adaptation optimally solved all challenge instances within one minute and was able to solve instances of up to 100,000 hot metal pickups.


2007 ◽  
Vol 54 (2) ◽  
pp. 407-411 ◽  
Author(s):  
Maria Wróbel ◽  
Halina Jurkowska

The non-cytotoxic concentration (20 microM) of menadione (2-methyl-1,4-naphthoquinone), after 1 h of incubation, leads to loss of the activity of rhodanese by 33%, 3-mercaptopyruvate sulfurtransferase by 20%, as well as the level of sulfane sulfur by about 23% and glutathione by 12%, in the culture of U373 cells, in comparison with the control culture. Reactive oxygen species generated by menadione oxidize sulfhydryl groups in active centers of the investigated enzymes, inhibiting them and saving cysteine for glutathione synthesis. A decreased sulfane sulfur level can be correlated with an oxidative stress.


2020 ◽  
Vol 21 (3) ◽  
pp. 1090 ◽  
Author(s):  
Patrycja Bronowicka-Adamska ◽  
Anna Bentke ◽  
Małgorzata Lasota ◽  
Maria Wróbel

The S-Allyl-L-cysteine (SAC) component of aged garlic extract (AGE) is proven to have anticancer, antihepatotoxic, neuroprotective and neurotrophic properties. γ-Cystathionase (CTH), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST) are involved in H2S/sulfane sulfur endogenous formation from L-cysteine. The aim of the study was to determine the effect of SAC on MCF-7 cells survival and apoptosis, which is a widely known approach to reduce the number of cancer cells. An additional goal of this paper was to investigate the effect of SAC on the activity and expression of enzymes involved in H2S production. The experiments were carried out in the human breast adenocarcinoma cell line MCF-7. Changes in the cell viability were determined by MTT assay. Cell survival was determined by flow cytometry (FC). Changes in enzymes expression were analyzed using Western blot. After 24 h and 48 h incubation with 2245 µM SAC, induction of late apoptosis was observed. A decrease in cell viability was observed with increasing SAC concentration and incubation time. SAC had no significant cytotoxic effect on the MCF-7 cells upon all analyzed concentrations. CTH, MPST and CBS expression were confirmed in non-treated MCF-7 cells. Significant decrease in MPST activity at 2245 µM SAC after 24 h and 48 h incubation vs. 1000 µM SAC was associated with decrease in sulfane sulfur levels. The presented results show promising SAC effects regarding the deterioration of the MCF-7 cells’ condition in reducing their viability through the downregulation of MPST expression and sulfate sulfur level reduction.


2019 ◽  
Vol 287 ◽  
pp. 24-29
Author(s):  
Sarum Boonmee ◽  
Kittirat Worakhut ◽  
Auttachai Utsajai ◽  
Nupol Mai-Ngam ◽  
Suphalerk Rassamipat

Morphology of graphite affects the mechanical and physical properties of cast irons. It is known that the spheroidal shape of graphite promotes both tensile strength and ductility. The morphology of graphite is generally quantified by the percent nodularity and/or graphite shape factors (e.g. roundness, sphericity, compactness, aspect ratio). From the quality control aspect, the nodularity is controlled by the residual magnesium content determined by the Optical Emission Spectrometry (OES). However, the nodularity is also affected by the cooling rate and the sulfur level. Therefore, the percent nodularity alone cannot be precisely predicted by the residual magnesium. In this study, the Thermal Analysis (TA) was used to predict the residual magnesium and the nodularity of ductile iron. The newly created TA demonstrated the reliable prediction as the effect of the residual magnesium, sulfur level and the cooling rate were combined in forms of cooling curves. The correlations of the residual magnesium, the Maximum Cooling Rate (MCR) and the angle of the cooling rate curve (θ) at the end of solidification were shown in this work. Finally, the relationships were used to encode in the software for the on-site prediction.


1979 ◽  
Vol 52 (2) ◽  
pp. 213-231 ◽  
Author(s):  
F. K. Lautenschlaeger

Abstract Rapid, yet reliable model compound vulcanization techniques have been developed in order to establish a link between MCV and vulcanizate properties. The main features of the new approach are the determination of the sulfidic product yield and a more extensive analysis of the isomer distribution. An increase in reaction time, a decrease in the sulfur level or an increase in the accelerator level lead to similar changes in the isomer distributions. Increasing zinc oxide levels lead to an increasing vulcanization efficiency. The isomer distribution is significantly affected by concentration changes. This has not been previously observed. A good correlation between MCV results and the analysis of sulfidic rubber networks in actual vulcanisates was observed.


1999 ◽  
Author(s):  
Gordon Bartley ◽  
Bruce Bykowski ◽  
Steve Welstand ◽  
David Lax

1984 ◽  
Vol 106 (3) ◽  
pp. 233-241 ◽  
Author(s):  
A. D. Wilson

The fatigue crack propagation properties of a C-Mn-Cb plate steel (SA633 Grade C) in a 3.5 percent NaCl solution have been evaluated for loading frequencies of 10, 1.0, and 0.1 Hertz. To reveal the influence of test specimen orientation and steel cleanliness, both a conventional sulfur level and a low sulfur-calcium treated plate were examined in the three major testing orientations. In addition to other basic testing of the plates, the elastic-plastic fracture toughness properties were also established. The fatigue crack growth rates at 0.1 Hz of both steels were increased by factors of 2–5 over air data, depending on the ΔK level and specimen orientation; some increase was also noted at 1.0 Hz. The acceleration due to the salt water environment was a result of a hydrogen embrittlement mechanism which resulted in bursts of faceted, cleavage-like, transgranular fracture of ferrite grains in this ferrite-pearlite steel. At higher ΔK levels, the calcium treated steel showed slower growth rates than the conventional sulfur level steel for all testing conditions. It was found that higher oxygen contents of a salt water solution could lead to corrosion product wedging at low ΔK levels, which could retard crack growth.


1980 ◽  
Vol 14 (9) ◽  
pp. 1121-1124 ◽  
Author(s):  
Timothy J. Truex ◽  
William R. Pierson ◽  
Douglas E. McKee ◽  
Mordecai. Shelef ◽  
Richard E. Baker

10.30544/76 ◽  
2015 ◽  
Vol 21 (3) ◽  
pp. 143-154
Author(s):  
Z. Slović ◽  
Lj. Nedeljković ◽  
K. Raić ◽  
S. Dević

This work presents the industrial results of sulfur level prediction at the end of vacuum degassing (VD) of low carbon Al-Si killed steels. The effect of plant conditions, such as slag chemistry, temperature, oxygen levels of the molten steel, and slag weight on desulphurization was investigated based on the measured results and thermodynamic calculations. The variables which influence steel desulfurization such as the sulfur capacity, the initial sulfur content, and the amount of ladle slag at the end of the VD process are also defined. The desulfurization procedure was numerically analyzed using the results of 31 heats under real plant conditions in which the measured final sulfur content had been reduced to less than of 10 ppm. A method for prediction of the slag amount based on the material balance of sulfur and aluminum is also presented. The values of the sulfur capacity were determined according to the well-known KTH and optical basicity based models. The obtained results of the regression equation show a predictive final sulfur level ability of R=0.911. This was proved as satisfactory.


Sign in / Sign up

Export Citation Format

Share Document