A Multi-layer Physic-based Model for Electric Vehicle Energy Demand Estimation in Interdependent Transportation Networks and Power Systems

Author(s):  
M. Hadi Amini
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 352
Author(s):  
Saad Ullah Khan ◽  
Khawaja Khalid Mehmood ◽  
Zunaib Maqsood Haider ◽  
Muhammad Kashif Rafique ◽  
Muhammad Omer Khan ◽  
...  

In this paper, a coordination method of multiple electric vehicle (EV) aggregators has been devised to flatten the system load profile. The proposed scheme tends to reduce the peak demand by discharging EVs and fills the valley gap through EV charging in the off-peak period. Upper level fair proportional power distribution to the EV aggregators is exercised by the system operator which provides coordination among the aggregators based on their aggregated energy demand or capacity. The lower level min max objective function is implemented at each aggregator to distribute power to the EVs. Each aggregator ensures that the EV customers’ driving requirements are not relinquished in spite of their employment to support the grid. The scheme has been tested on IEEE 13-node distribution system and an actual distribution system situated in Seoul, Republic of Korea whilst utilizing actual EV mobility data. The results show that the system load profile is smoothed by the coordination of aggregators under peak shaving and valley filling goals. Also, the EVs are fully charged before departure while maintaining a minimum energy for emergency travel.


2012 ◽  
Vol 27 (3) ◽  
pp. 1628-1636 ◽  
Author(s):  
Peng Zhang ◽  
Kejun Qian ◽  
Chengke Zhou ◽  
Brian G. Stewart ◽  
Donald M. Hepburn

2018 ◽  
Vol 164 ◽  
pp. 01038
Author(s):  
Ridho Hantoro ◽  
Cahyun Budiono ◽  
Ronald Kipkoech Ketter ◽  
Nyoman Ade Satwika

Over 70 000 000 people in Indonesia have no access to electricity. This study was carried out in Bawean Islands which are located in the Java Sea about 150 km North of Surabaya, the headquarters of East Java. The study to determine the energy services available in the Bawean Island was done through interviewing a random sample of 72 households in two villages namely Komalasa and Lebak. Based on the average monthly electricity consumption of the sampled households connected to the grid, a hybrid renewable energy based electrical supply system was designed for Gili Timur Island, one of the satellite islands around Bawean Island. The system was designed with the aid of a time step simulation software used to design and analyze hybrid power systems. A sensitivity analysis was also carried out on the optimum system to study the effects of variation in some of the system variables. HOMER suggests that for the expected peak load of 131 kW, an optimum system will consist of 150 kW from PV array, two wind turbines each rated 10 kW, a 75 kW diesel generator and batteries for storage.


2018 ◽  
Vol 10 (10) ◽  
pp. 3560 ◽  
Author(s):  
Xian Zhao ◽  
Siqi Wang ◽  
Xiaoyue Wang

In order to satisfy the increasing energy demand and deal with the environmental problem caused by the conventional energy vehicle; the new energy vehicle (NEV), especially the electric vehicle (EV), has attracted increasing attention and the corresponding research has developed rapidly in recent years. The electric vehicle requires a battery with high energy density and frequent charging. In order to ensure high performance of the electric vehicle; the reliability of its charging system is extremely important. In this paper; an overview of the research on electric vehicle charging system reliability from 1998 to 2017 is presented from a bibliometric perspective. This study provides a comprehensive analysis of the current research climate and the emerging trends from the following four aspects: basic characteristics of publication outputs; including annual publication outputs and document types; collaboration analysis of countries/territories; institutions and authors; co-citation analysis of cited authors and cited references; co-occurrence analysis of subjects and keywords. By using CiteSpace; the collaboration relationship; co-citation and co-occurrence networks are shown clearly. According to the analysis results; studies in this research field will keep developing rapidly in the near future and several future research directions are proposed in the conclusions.


2021 ◽  
Vol 13 (22) ◽  
pp. 12379
Author(s):  
Raymond Kene ◽  
Thomas Olwal ◽  
Barend J. van Wyk

The future direction of electric vehicle (EV) transportation in relation to the energy demand for charging EVs needs a more sustainable roadmap, compared to the current reliance on the centralised electricity grid system. It is common knowledge that the current state of electricity grids in the biggest economies of the world today suffer a perennial problem of power losses; and were not designed for the uptake and integration of the growing number of large-scale EV charging power demands from the grids. To promote sustainable EV transportation, this study aims to review the current state of research and development around this field. This study is significant to the effect that it accomplishes four major objectives. (1) First, the implication of large-scale EV integration to the electricity grid is assessed by looking at the impact on the distribution network. (2) Secondly, it provides energy management strategies for optimizing plug-in EVs load demand on the electricity distribution network. (3) It provides a clear direction and an overview on sustainable EV charging infrastructure, which is highlighted as one of the key factors that enables the promotion and sustainability of the EV market and transportation sector, re-engineered to support the United Nations Climate Change Agenda. Finally, a conclusion is made with some policy recommendations provided for the promotion of the electric vehicle market and widespread adoption in any economy of the world.


Author(s):  
Tahir Cetin Akinci

The production, transmission, and distribution of energy can only be made stable and continuous by detailed analysis of the data. The energy demand needs to be met by a number of optimization algorithms during the distribution of the generated energy. The pricing of the energy supplied to the users and the change for investments according to the demand hours led to the formation of energy exchanges. This use costs varies for active or reactive powers. All of these supply-demand and pricing plans can only be achieved by collecting and analyzing data at each stage. In the study, an electrical power line with real parameters was modeled and fault scenarios were created, and faults were determined by artificial intelligence methods. In this study, both the power flow of electrical power systems and the methods of meeting the demands were investigated with big data, machine learning, and artificial neural network approaches.


2020 ◽  
pp. 634-657
Author(s):  
Fahad Parvez Mahdi ◽  
Pandian Vasant ◽  
Vish Kallimani ◽  
M. Abdullah-Al-Wadud ◽  
Junzo Watada

Economic emission dispatch (EED) problems are one of the most crucial problems in power systems. Growing energy demand, limited reserves of fossil fuel and global warming make this topic into the center of discussion and research. In this chapter, we will discuss the use and scope of different quantum inspired computational intelligence (QCI) methods for solving EED problems. We will evaluate each previously used QCI methods for EED problem and discuss their superiority and credibility against other methods. We will also discuss the potentiality of using other quantum inspired CI methods like quantum bat algorithm (QBA), quantum cuckoo search (QCS), and quantum teaching and learning based optimization (QTLBO) technique for further development in this area.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4791
Author(s):  
Jerzy Ryszard Szymanski ◽  
Marta Zurek-Mortka ◽  
Daniel Wojciechowski ◽  
Nikolai Poliakov

The paper proposes the adaptation of the industrial plant’s power network to supply electric vehicle (EV) fast-charging converters (above 300 kW) using renewable energy sources (RESs). A 600 V DC microgrid was used to supply energy from RESs for the needs of variable speed motor drives and charging of EV batteries. It has been shown that it is possible to support the supply of drive voltage frequency converters (VFCs) and charging of EV batteries converters with renewable energy from a 600 V DC microgrid, which improves the power quality indicators in the power system. The possibility of implementing the fast EV batteries charging station to the industrial plant’s power system in such a way that the system energy demand is not increased has also been shown. The EV battery charging station using the drive converter has been presented, as well as the results of simulation and laboratory tests of the proposed solution.


2020 ◽  
Vol 265 ◽  
pp. 114809 ◽  
Author(s):  
Bo Zeng ◽  
Bo Sun ◽  
Xuan Wei ◽  
Dunwei Gong ◽  
Dongbo Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document