System for the Measurement of sEMG and Angular Displacement of the Ankle-Foot Joint Complex for Muscle Co-activation Detection in the Diagnosis of Foot Drop Pathology

Author(s):  
Santiago Noriega ◽  
Maria C. Rojas ◽  
Cecilia Murrugarra
2021 ◽  
Author(s):  
Lauren Williams ◽  
Sarah Ridge ◽  
A. Wayne Johnson ◽  
Elisa S. Arch ◽  
Dustin A. Bruening

Abstract Background: Previous research shows kinematic and kinetic coupling between the metatarsophalangeal (MTP) and midtarsal joints during gait. Studying the effects of MTP position as well as foot structure on this coupling may help determine to what extent foot coupling during dynamic and active movement is due to the windlass mechanism. This study’s purpose was to investigate the kinematic and kinetic foot coupling during controlled passive, active, and dynamic movements. Methods: After arch height and flexibility were measured, participants performed four conditions: Seated Passive MTP Extension, Seated Active MTP Extension, Standing Passive MTP Extension, and Standing Active MTP Extension. Next, participants performed three heel raise conditions that manipulated the starting position of the MTP joint: Neutral, Toe Extension, and Toe Flexion. A multisegment foot model was created in Visual 3D and used to calculate ankle, midtarsal, and MTP joint kinematics and kinetics. Results: Kinematic coupling (ratio of midtarsal to MTP angular displacement) was approximately six times greater in Neutral heel raises compared to Seated Passive MTP Extension, suggesting that the windlass only plays a small kinematic role in dynamic tasks. As the starting position of the MTP joint became increasingly extended during heel raises, the amount of negative work at the MTP joint and positive work at the midtarsal joint increased proportionally, while distal-to-hindfoot work remained unchanged. Correlations suggest that there is not a strong relationship between static arch height/flexibility and kinematic foot coupling. Conclusions: Our results show that there is kinematic and kinetic coupling within the distal foot, but this coupling is attributed only in small measure to the windlass mechanism. Additional sources of coupling include foot muscles and elastic energy storage and return within ligaments and tendons. Furthermore, our results suggest that the plantar aponeurosis does not function as a rigid cable but likely has extensibility that affects the effectiveness of the windlass mechanism. Arch structure did not affect foot coupling, suggesting that static arch height or arch flexibility alone may not be adequate predictors of dynamic foot function.


1997 ◽  
Vol 2 (4) ◽  
pp. 1-3
Author(s):  
James B. Talmage

Abstract The AMA Guides to the Evaluation of Permanent Impairment, Fourth Edition, uses the Injury Model to rate impairment in people who have experienced back injuries. Injured individuals who have not required surgery can be rated using differentiators. Challenges arise when assessing patients whose injuries have been treated surgically before the patient is rated for impairment. This article discusses five of the most common situations: 1) What is the impairment rating for an individual who has had an injury resulting in sciatica and who has been treated surgically, either with chemonucleolysis or with discectomy? 2) What is the impairment rating for an individual who has a back strain and is operated on without reasonable indications? 3) What is the impairment rating of an individual with sciatica and a foot drop (major anterior tibialis weakness) from L5 root damage? 4) What is the rating for an individual who is injured, has true radiculopathy, undergoes a discectomy, and is rated as Category III but later has another injury and, ultimately, a second disc operation? 5) What is the impairment rating for an older individual who was asymptomatic until a minor strain-type injury but subsequently has neurogenic claudication with severe surgical spinal stenosis on MRI/myelography? [Continued in the September/October 1997 The Guides Newsletter]


2003 ◽  
Vol 14 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Walter Sturm

Abstract: Behavioral and PET/fMRI-data are presented to delineate the functional networks subserving alertness, sustained attention, and vigilance as different aspects of attention intensity. The data suggest that a mostly right-hemisphere frontal, parietal, thalamic, and brainstem network plays an important role in the regulation of attention intensity, irrespective of stimulus modality. Under conditions of phasic alertness there is less right frontal activation reflecting a diminished need for top-down regulation with phasic extrinsic stimulation. Furthermore, a high overlap between the functional networks for alerting and spatial orienting of attention is demonstrated. These findings support the hypothesis of a co-activation of the posterior attention system involved in spatial orienting by the anterior alerting network. Possible implications of these findings for the therapy of neglect are proposed.


2020 ◽  
Vol 25 (1) ◽  
pp. 30-36
Author(s):  
Soliman Oushy ◽  
Avital Perry ◽  
Christopher S. Graffeo ◽  
Aditya Raghunathan ◽  
Lucas P. Carlstrom ◽  
...  

OBJECTIVEGanglioglioma is a low-grade central nervous system neoplasm with a pediatric predominance, accounting for 10% of all brain tumors in children. Gangliogliomas of the cervicomedullary junction (GGCMJs) and brainstem (GGBSs) present a host of management challenges, including a significant risk of surgical morbidity. At present, understanding of the prognostic factors—including BRAF V600E status—is incomplete. Here, the authors report a single-institution GGCMJ and GGBS experience and review the pertinent literature.METHODSA prospectively maintained neurosurgical database at a large tertiary care academic referral center was retrospectively queried for cases of GGCMJ pathologically confirmed in the period from 1995 to 2015; appropriate cases were defined by diagnosis codes and keywords. Secondary supplemental chart review was conducted to confirm or capture relevant data. The primary study outcome was treatment failure as defined by evidence of radiographic recurrence or progression and/or clinical or functional decline. A review of the literature was conducted as well.RESULTSFive neurosurgically managed GGBS patients were identified, and the neoplasms in 4 were classified as GGCMJ. All 5 patients were younger than 18 years old (median 15 years, range 4–16 years) and 3 (60%) were female. One patient underwent gross-total resection, 2 underwent aggressive subtotal resection (STR), and 2 underwent stereotactic biopsy only. All patients who had undergone STR or biopsy required repeat resection for tumor control or progression. Progressive disease was treated with radiotherapy in 2 patients, chemotherapy in 2, and chemoradiotherapy alone in 1. Immunostaining for BRAF V600E was positive in 3 patients (60%). All 5 patients experienced at least one major complication, including wound infection, foot drop, hemiparesis, quadriparesis, cranial neuropathy, C2–3 subluxation, syringomyelia, hydrocephalus, aspiration, and coma. Overall mortality was 20%, with 1 death observed over 11 years of follow-up.CONCLUSIONSGGBS and GGCMJ are rare, benign posterior fossa tumors that carry significant perioperative morbidity. Contemporary management strategies are heterogeneous and include combinations of resection, radiotherapy, and chemotherapy. The BRAF V600E mutation is frequently observed in GGBS and GGCMJ and appears to have both prognostic and therapeutic significance with targeted biological agents.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1162
Author(s):  
Hogene Kim ◽  
Sangwoo Cho ◽  
Hwiyoung Lee

This study involves measurements of bi-axial ankle stiffness in older adults, where the ankle joint is passively moved along the talocrural and subtalar joints using a custom ankle movement trainer. A total of 15 elderly individuals participated in test–retest reliability measurements of bi-axial ankle stiffness at exactly one-week intervals for validation of the angular displacement in the device. The ankle’s range of motion was also compared, along with its stiffness. The kinematic measurements significantly corresponded to results from a marker-based motion capture system (dorsi-/plantar flexion: r = 0.996; inversion/eversion: r = 0.985). Bi-axial ankle stiffness measurements showed significant intra-class correlations (ICCs) between the two visits for all ankle movements at slower (2.14°/s, ICC = 0.712) and faster (9.77°/s, ICC = 0.879) speeds. Stiffness measurements along the talocrural joint were thus shown to have significant negative correlation with active ankle range of motion (r = −0.631, p = 0.012). The ankle movement trainer, based on anatomical characteristics, was thus used to demonstrate valid and reliable bi-axial ankle stiffness measurements for movements along the talocrural and subtalar joint axes. Reliable measurements of ankle stiffness may help clinicians and researchers when designing and fabricating ankle-foot orthosis for people with upper-motor neuron disorders, such as stroke.


Author(s):  
Helen Engemann

Abstract Simultaneous bilingual children sometimes display crosslinguistic influence (CLI), widely attested in the domain of morphosyntax. It remains less clear whether CLI affects bilinguals’ event construal, what motivates its occurrence and directionality, and how developmentally persistent it is. The present study tested predictions generated by the structural overlap hypothesis and the co-activation account in the motion event domain. 96 English–French bilingual children of two age groups and 96 age-matched monolingual English and French controls were asked to describe animated videos displaying voluntary motion events. Semantic encoding in main verbs showed bidirectional CLI. Unidirectional CLI affected French path encoding in the verbal periphery and was predicted by the presence of boundary-crossing, despite the absence of structural overlap. Furthermore, CLI increased developmentally in the French data. It is argued that these findings reflect highly dynamic co-activation patterns sensitive to the requirements of the task and to language-specific challenges in the online production process.


Sign in / Sign up

Export Citation Format

Share Document