scholarly journals Analysis of Warpage Induced by Thick Copper Metal on Semiconductor Device

Author(s):  
Michele Calabretta ◽  
Alessandro Sitta ◽  
Salvatore Massimo Oliveri ◽  
Gaetano Sequenzia

AbstractElectrochemical deposited (ECD) thick film copper on silicon substrate is one of the most challenging technological brick for semiconductor industry representing a relevant improvement from the state of art because of its excellent electrical and thermal conductivity compared with traditional compound such as aluminum. The main technological factor that makes challenging the industrial implementation of thick copper layer is the severe wafer warpage induced by Cu annealing process, which negatively impacts the wafer manufacturability. The aim of presented work is the understanding of warpage variation during annealing process of ECD thick (~20 µm) copper layer. Warpage has been experimental characterized at different temperature by means of Phase-Shift Moiré principle, according to different annealing profiles. A linear Finite Element Model (FEM) has been developed to predict the geometrically stress-curvature relation, comparing results with analytical models.

2021 ◽  
Vol 11 (11) ◽  
pp. 5140
Author(s):  
Michele Calabretta ◽  
Alessandro Sitta ◽  
Salvatore Massimo Oliveri ◽  
Gaetano Sequenzia

Electrochemical deposited (ECD) thick film copper on silicon substrate is one of the most challenging technological brick for semiconductor industry representing a relevant improvement from the state of art because of its excellent electrical and thermal conductivity compared with traditional materials, such as aluminum. The main technological factor that makes challenging the industrial implementation of thick copper layer is the severe wafer warpage induced by Cu annealing process, which negatively impacts the wafer manufacturability. The aim of presented work is the understanding of warpage variation during annealing process of ECD thick (20 μm) copper layer. Warpage is experimentally characterized at different temperature by means of Phase-Shift Moiré principle, according to different annealing profiles. Physical analysis is employed to correlated the macroscopic warpage behavior with microstructure modification. A linear Finite Element Model (FEM) is developed to predict the geometrically stress-curvature relation, comparing results with analytical models.


2019 ◽  
Vol 17 (2) ◽  
pp. 183-202
Author(s):  
Sabiha Barour ◽  
Abdesselam Zergua ◽  
Farid Bouziadi ◽  
Waleed Abed Jasim

Purpose This paper aims to develop a non-linear finite element model predicting the response of externally strengthened beams under a three-point flexure test. Design/methodology/approach The ANSYS software is used for modeling. SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A parametric study was carried out. The effects of compressive strength, Young’s modulus, layers number and carbon fiber-reinforced polymer thickness on beam behavior are analyzed. A comparative study between the non-linear finite element and analytical models, including the ACI 440.2 R-08 model, and experimental data is also carried out. Findings A comparative study of the non-linear finite element results with analytical models, including the ACI 440.2 R-08 model and experimental data for different parameters, shows that the strengthened beams possessed better resistance to cracks. In general, the finite element model’s results are in good agreement with the experimental test data. Practical implications This model will predict the strengthened beams behavior and can describe the beams physical conditions, yielding the results that can be interpreted in the structural study context without using a laboratory testing. Originality/value On the basis of the results, a good match is found between the model results and experimental data at all stages of loading the tested samples. Crack models obtained in the non-linear finite element model in the beams are also presented. The submitted finite element model can be used to predict the behavior of the reinforced concrete beam. Also, the comparative study between an analytical model proposed by of current code of ACI 440.2 R-08 and finite element analysis is investigated.


Author(s):  
S.F. Corcoran

Over the past decade secondary ion mass spectrometry (SIMS) has played an increasingly important role in the characterization of electronic materials and devices. The ability of SIMS to provide part per million detection sensitivity for most elements while maintaining excellent depth resolution has made this technique indispensable in the semiconductor industry. Today SIMS is used extensively in the characterization of dopant profiles, thin film analysis, and trace analysis in bulk materials. The SIMS technique also lends itself to 2-D and 3-D imaging via either the use of stigmatic ion optics or small diameter primary beams.By far the most common application of SIMS is the determination of the depth distribution of dopants (B, As, P) intentionally introduced into semiconductor materials via ion implantation or epitaxial growth. Such measurements are critical since the dopant concentration and depth distribution can seriously affect the performance of a semiconductor device. In a typical depth profile analysis, keV ion sputtering is used to remove successive layers the sample.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Meixia Chen ◽  
Cong Zhang ◽  
Xiangfan Tao ◽  
Naiqi Deng

This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.


Author(s):  
Randall L. Mayes ◽  
G. Richard Eisler

Abstract Experiments were performed to verify the analytical models for a robotic manipulator with two flexible links. A finite element model (FEM) employing two-dimensional beam elements was used to model the structure. A proportional model relating input voltage to output torque was used for both hub and elbow joint motors. With some minor adjustments to the link stiffness, the FEM modal frequencies matched the experimentally extracted frequencies within 1.5%. However the voltage-torque relationship for the hub motor was found to exhibit dynamics in the frequency range of interest.


2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


Sign in / Sign up

Export Citation Format

Share Document