Commercial Glass Fibers

2021 ◽  
pp. 1-87
Author(s):  
Qun Zu ◽  
Mette Solvang ◽  
Hong Li
2020 ◽  
Vol 11 (3) ◽  
pp. 522-536
Author(s):  
Qun Zu ◽  
Wei Song ◽  
Huidan Zeng ◽  
Xiaowu Yu ◽  
Songlin Huang ◽  
...  

Author(s):  
Daniel Nuez ◽  
Phoumra Tan

Abstract Conductive anodic filament (CAF) formation is a mechanism caused by an electrochemical migration of metals from a metal trace in ICs or in PCBs. This is commonly caused by the moisture build-up in the affected metal terminals in an IC package or PC board caused by critical temperature, high humidity and high voltage gradients conditions. This phenomenon is known to have caused catastrophic field failures on various OEMs electronic components in the past [1,7]. Most published articles on CAF described the formation of the filament in a lateral formation through the glass fiber interfaces between two adjacent metal planes [1-6, 8-12]. One common example is the CAF formation seen between PTH (Plated through Hole) in the laminated substrate with two different potentials causing shorts [1-6, 8-12]. In this paper, the Cu filament grows in a vertical fashion (z-axis formation) creating a vertical plane shorts between the upper and lower metal terminals in a laminated IC package substrate. The copper growth migration does not follow the fiber strands laterally or vertically through them. Instead, it grows through the stress created gaps between the impregnated carbon epoxy fillers from the upper metal trace to the lower metal trace with two different potentials, between the glass fibers. This vertical CAF mechanism creates a low resistive short that was sometimes found to be intermittent in nature. This paper presents some successful failure analysis approaches used to isolate and detect the failure locations for this type of failing devices. This paper also exposes the unique physical appearance of the vertical CAF formation.


2021 ◽  
pp. 089270572199319
Author(s):  
Gustavo B Carvalho

Ternary hybrid composites of Polypropylene (PP)/Short Glass Fibers (GF)/Hollow Glass Beads (HGB) were prepared using untreated and aminosilane-treated HGB, compatibilized with maleated-PP, and with varying total and relative GF/HGB contents. Static/short-term flexural strength properties data revealed, through lower flexural strength values, that the presence of untreated HGB particles induces to fiber-polymer interfacial decoupling at much higher extent than in the presence of aminosilane-treated HGB particles. This phenomenon is also evident when evaluating the data from displacement-controlled three-point bending fatigue tests. Monitored up to 106 cycles, the analyzed hybrid composites presented distinct performance relative to their fatigue stress relaxation rate: the lower the matrix-reinforcements’ interfacial adhesion, more pronounced the stress relaxation rate as a function of the number of fatigue cycles. Dynamic Mechanical Thermal Analysis (DMTA) results could successfully reveal the hybrid composites behavior at the microstructural level when they were submitted to both static flexural test and fatigue, depending on the degree of interfacial interactions between the polymer matrix of PP and the hybrid reinforcements of GF and HGB (with and without aminosilane surface treatment).


2021 ◽  
Vol 11 (13) ◽  
pp. 6056
Author(s):  
Egle Rosson ◽  
Acacio Rincón Rincón Romero ◽  
Denis Badocco ◽  
Federico Zorzi ◽  
Paolo Sgarbossa ◽  
...  

Spent fluorescent lamps (SFL) are classified as hazardous materials in the European Waste Catalogue, which includes residues from various hi-tech devices. The most common end-of-life treatment of SFL consists in the recovery of rare earth elements from the phosphor powders, with associated problems in the management of the glass residues, which are usually landfilled. This study involves the manufacturing of porous ceramics from both the coarse glass-rich fraction and the phosphor-enriched fraction of spent fluorescent lamps. These porous materials, realizing the immobilization of Rare Earth Elements (REEs) within a glass matrix, are suggested for application in buildings as thermal and acoustic insulators. The proposed process is characterized by: (i) alkaline activation (2.5 M or 1 M NaOH aqueous solution); (ii) pre-curing at 75 °C; (iii) the addition of a surfactant (Triton X-100) for foaming at high-speed stirring; (iv) curing at 45 °C; (v) viscous flow sintering at 700 °C. All the final porous ceramics present a limited metal leaching and, in particular, the coarse glass fraction activated with 2.5 M NaOH solution leads to materials comparable to commercial glass foams in terms of mechanical properties.


Fibers ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 40
Author(s):  
Felicia Syrén ◽  
Joel Peterson ◽  
Nawar Kadi

The versatile bast fiber jute has environmental benefits compared to glass fibers. However, for jute to be used in a composite, the fiber properties need to be altered. This study aims to improve the mechanical properties of jute yarn to make it more suitable for technical applications as a composite. To alter its mechanical properties, jute yarn was immersed in water during microwave treatment. The time and power of the microwave settings differed between runs. Two states of the yarn were tested: fastened and un-fastened. Tensile testing was used at the yarn and fiber level, followed by Fourier-transform infrared spectroscopy (FTIR) and microscopy. The treatment result demonstrated the ability to increase the elongation of the jute yarn by 70%. The tenacity was also increased by 34% in the fastened state and 20% in the un-fastened state. FTIR showed that no change in the molecular structure occurred. The treatments resulted in a change of yarn thickness depending on the state of the yarn. The results indicate that microwave treatment can be used to make jute more suitable for technical applications depending on the microwave treatment parameters.


Author(s):  
Francisco Maciel Monticeli ◽  
Ana Karoline dos Reis ◽  
Roberta Motta Neves ◽  
Luis Felipe de Paula Santos ◽  
Edson Cocchieri Botelho ◽  
...  

The thermoplastic and thermoset laminates reinforced with different fibers generate variations in the laminated composite mechanical behavior. This work aims to analyze thermoplastic and thermoset composites creep behavior with a reduced number of experiments, applying curve-fitting analytical models (Weibull and Findley) and statistical approach (ANOVA, F-test, and SRM) in order to describe creep behavior. Creep tests were carried out using a design of experiments to define parameter levels, aiming to reduce the number of the experiments, keeping reliability relevance. The temperature shows a stronger influence of creep deformation compared with the use of distinct materials. Thermoplastic matrices seem to be more sensitive to deformation, decreasing the reinforcement contribution. On the other hand, the creep resistance of the thermoset matrix conducts a significant contribution of strain behavior for the reinforcement used. The Findley model showed a temperature-dependent response. While, the Weibull-based model exhibits temperature and material-dependence, ensuring a greater sensitivity range of the parameters applied, an essential factor for a more realistic method description.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
Mehmetcan Akbulut ◽  
Leonid Kotov ◽  
Kort Wiersma ◽  
Jie Zong ◽  
Maohe Li ◽  
...  

We report on an eye-safe, transform-limited, millijoule energy, and high average power fiber laser. The high gain and short length of the NP phosphate-glass fibers enable the SBS-free operation with kW level peak power. The output energy is up to 1.3 mJ, and the average power is up to 23 W at an 18 kHz repetition rate with 600 ns pulses (peak power > 2.1 kW). The PER is ≈16 dB and the M2 of the beam is 1.33 × 1.18. The coherent LIDAR Figure Of Merit (FOM) is 174 mJ*sqrt(Hz), which to our knowledge is the highest reported for a fiber laser. We also report 0.75 mJ energy and >3.7 kW peak power with down to 200 ns pulses and up to 1.21 mJ energy with a 3–5 kHz repetition rate operation of the current system.


Sign in / Sign up

Export Citation Format

Share Document