Thermal Characteristics of the Wet Pollution Layer on Condensing Heating Surfaces of Exhaust Gas Boilers

Author(s):  
Victoria Kornienko ◽  
Roman Radchenko ◽  
Tadeusz Bohdal ◽  
Mykola Radchenko ◽  
Andrii Andreev
Fuel ◽  
2015 ◽  
Vol 159 ◽  
pp. 519-529 ◽  
Author(s):  
Shun-Chang Yen ◽  
Yu-Zong Huang ◽  
Kuo-Ching San

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 120
Author(s):  
Zongming Yang ◽  
Victoria Kornienko ◽  
Mykola Radchenko ◽  
Andrii Radchenko ◽  
Roman Radchenko ◽  
...  

One of the most effective methods towards improving the environmental safety of combustion engines is the application of specially prepared water-fuel emulsions (WFE). The application of WFE makes it possible to reduce primary sulfur fuel consumption and reveals the possibility of capturing the pollutants from exhaust gases by applying condensing low-temperature heating surfaces (LTHS). In order to realize such a double effect, it is necessary to investigate the pollution processes on condensing LTHS of exhaust gas boilers (EGB), especially the process of low-temperature condensing a sulfuric acid vapor from exhaust gases to investigate the influence of condensing LTHS on the intensity of pollutants captured from the exhaust gases. The aim of this research is to assess the influence of the intensity of pollutants captured from exhaust gases by condensing LTHS in dependence of water content in WFE combustion. Investigations were carried out at a special experimental setup. The processing of the results of the experimental studies was carried out using the computer universal statistical graphic system Statgraphics. Results have shown that in the presence of a condensing heating surface, the degree of capture (purification) of pollutants from the exhaust gas flow is up to 0.5–0.6.


2020 ◽  
pp. 154-154 ◽  
Author(s):  
Victoria Kornienko ◽  
Mykola Radchenko ◽  
Roman Radchenko ◽  
Dmytro Konovalov ◽  
Andrii Andreev ◽  
...  

When using modern highly efficient internal combustion engines with lowered potential of exhaust heat the heat recovery systems receive increasing attention. The efficiency of combustion exhaust heat recovery at the low potential level can be enhanced by deep cooling the combustion products below a dew point temperature, which is practically the only possibility for reducing the temperature of boiler exhaust gas, while ensuring the reliability, environmental friendliness and economy of power plant. The aim of research is to investigate the influence of multiplicity of circulation and temperature difference at the exit of exhaust gas boiler heating surfaces, which values are varying as 20, 15, 10?C, on exhaust gas boiler characteristics. The calculations were performed to compare the constructive and thermal characteristics of the various waste heat recovery circuits and exhaust gas boiler of ship power plant. Their results showed that due to application of condensing heating surfaces in exhaust gas boiler the total heat capacity and steam capacity of exhaust gas boiler increases. The increase of exhaust gas boiler heat capacity is proportional to the growth of its overall dimensions. A direct-flow design of the boiler provides a significant increase in heat efficiency and decrease in dimensions. In addition, a direct-flow boiler circuit does not need steam separator, circulation pump, the capital cost of which is about half (or even more) of heating surface cost.


2021 ◽  
Vol 11 (9) ◽  
pp. 3892
Author(s):  
Marco Bietresato ◽  
Francesco Selmo ◽  
Massimiliano Renzi ◽  
Fabrizio Mazzetto

A truly universal system to optimize consumptions, monitor operation and predict maintenance interventions for internal combustion engines must be independent of onboard systems, if present. One of the least invasive methods of detecting engine performance involves the measurement of the exhaust gas temperature (EGT), which can be related to the instant torque through thermodynamic relations. The practical implementation of such a system requires great care since its torque-predictive capabilities are strongly influenced by the position chosen for the temperature-detection point(s) along the exhaust line, specific for each engine, the type of installation for the thermocouples, and the thermal characteristics of the interposed materials. After performing some preliminary tests at the dynamometric brake on a compression-ignition engine for agricultural purposes equipped with three thermocouples at different points in the exhaust duct, a novel procedure was developed to: (1) tune a CFD-FVM-model of the exhaust pipe and determine many unknown thermodynamic parameters concerning the engine (including the real EGT at the exhaust valve outlet in some engine operative conditions), (2) use the CFD-FVM results to considerably increase the predictive capability of an indirect torque-detection strategy based on the EGT. The joint use of the CFD-FVM software, Response Surface Method, and specific optimization algorithms was fundamental to these aims and granted the experimenters a full mastery of systems’ non-linearity and a maximum relative error on the torque estimations of 2.9%.


2019 ◽  
Vol 55 (1) ◽  
pp. 28-33
Author(s):  
V. S. Kornienko

The necessity to fulfill all requirements of international organizations in the field of environmental protection, need to reduce heat loss in combustion of organic fuels, increasing economy and reliability of all elements of ship's power plant make it necessary to develop complex technology. The aim of study is to develop system for complex exhaust gas cleaning of internal combustion engine (ICE). For performing tasks in technology of proposed method, providing solutions to problems of improving economic efficiency, improvement of environmental indicators and reliability, it is envisaged 5 stages of technological process. At all stages conditions for appropriate running of physico-chemical processes in the next stage are created. Possibility of solving complex problems in proposed technology is ensured by combustion of water-fuel emulsion (WFE) with specifically recommended value of water content W r = 30%. When WFE is burnt with a water content of 30%, the low-temperature corrosion intensity decreases, which allows to install a condensing heating surfaces in exhaust gas boilers. At these conditions an equimolar ratio of nitrogen oxides NO2:NO in gases is required, which is necessary to activate their absorption properties. When WFE is burnt with water content W r = 30% the metal surface with a temperature below of dew point H2SO4 passivates. Experimental studies performed show that: 1 m2 of condensing surface absorbs 3.4 mg/m3 of NOx and 0.89 mg/m3 of SO2, which makes it possible to decrease the NOx concentration by 1.55 times and SO2 - in 1.5 times. There is a process of precipitation of toxic solid ash and soot particles: from 150...170 mg/m3 (at outlet of ICE when WFE is burnt with W r = 30%) to 70...90 mg/m3 after the condensing surface. Consumption of water with alkaline properties decreases when NOx, SO2, CO2 concentration is reduced in front of scrubbers. Reducing pollution of heating surfaces increases the cleaning period of EGB in 2.5 times. The using of complex system provides efficient exhaust gas cleaning at the level recommended by IMO.


Crisis ◽  
2005 ◽  
Vol 26 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Elizabeth King ◽  
Neil Frost

Abstract. A retrospective suicide study revealed that the Forestry Commission car parks in the New Forest in southern England were a previously unrecognized magnet for nonlocal suicides, attracting as high a proportion of “visitors” (35/43 in 1993-97) as among suicides who jumped from the cliffs at the infamous Beachy Head (39/48 in 1993-97). Over 95% of the car park suicides died from car exhaust gas poisoning. A multiagency initiative aimed to reduce the number of suicides in the 140 New Forest car parks where restricting access was impossible, and environmental issues paramount. Signs displaying the Samaritans' national telephone number were erected in the 26 car parks in which 50% of the car park suicides had occurred. Numbers, location, and residence of all car park deaths were monitored for 3 years. Corresponding changes in other forest registration districts were also monitored. During the 3-year intervention period the number of car park suicides fell significantly from 10/year, 1988-1997, to 3.3/year. The average annual total number of suicides in the New Forest registration district also decreased. No significant changes were found in comparable forest districts. The number of suicides in the New Forest car parks remained low during the 2 years following the evaluation.


2020 ◽  
Vol 14 (4) ◽  
pp. 7481-7497
Author(s):  
Yousef Najjar ◽  
Abdelrahman Irbai

This work covers waste energy utilization of the combined power cycle by using it in the candle raw material (paraffin) melting process and an economic study for this process. After a partial utilization of the burned fuel energy in a real bottoming steam power generation, the exhaust gas contains 0.033 of the initially burned energy. This tail energy with about 128 ºC is partly driven in the heat exchanger of the paraffin melting system. Ansys-Fluent Software was used to study the paraffin wax melting process by using a layered system that utilizes an increased interface area between the heat transfer fluid (HTF) and the phase change material (PCM) to improve the paraffin melting process. The results indicate that using 47.35 kg/s, which is 5% of the entire exhaust gas (881.33 kg/s) from the exit of the combined power cycle, would be enough for producing 1100 tons per month, which corresponds to the production quantity by real candle's factories. Also, 63% of the LPG cost will be saved, and the payback period of the melting system is 2.4 years. Moreover, as the exhaust gas temperature increases, the consumed power and the payback period will decrease.


Sign in / Sign up

Export Citation Format

Share Document