The Effects of the Pressing Chamber Design Parameters on the Quality of Extrusions

2021 ◽  
pp. 65-87
Author(s):  
Peter Križan
2019 ◽  
Vol 1 (7) ◽  
pp. 10-13
Author(s):  
D. Yu. Ershov ◽  
I. N. Lukyanenko ◽  
E. E. Aman

The article shows the need to develop diagnostic methods for monitoring the quality of lubrication systems, which makes it possible to study the dynamic processes of contacting elements of the friction systems of instrument mechanisms, taking into account roughness parameters, the presence of local surface defects of elements and the bearing capacity of a lubricant. In the present article, a modern diagnostic model has been developed to control the quality of the processes of production and operation of friction systems of instrument assemblies. With the help of the developed model, it becomes possible to establish the relationship of diagnostic and design parameters of the mechanical system, as well as the appearance of possible local defects and lubricant state, which characterize the quality of friction systems used in many mechanical assemblies of the mechanisms of devices. The research results are shown in the form of nomograms to assess the defects of the elements of friction mechanisms of the mechanisms of the devices.


2013 ◽  
Vol 791-793 ◽  
pp. 799-802
Author(s):  
Ya Ping Wang ◽  
H.R. Shi ◽  
L. Gao ◽  
Z. Wang ◽  
X.Y. Jia ◽  
...  

With the increasing of the aging of population all over the world, and With the inconvenience coming from diseases and damage, there will be more and more people using the wheelchair as a tool for transport. When it cant be short of the wheelchair in the daily life, the addition of the function will bring the elevation of the quality of life for the unfortunate. Staring with this purpose, the research designs a pickup with planetary bevel gear for the wheelchair. After determining the basic function of the wheelchair aids, the study determines the design parameters by using the knowledge of parametric design and completes the model for the system with Pro/E, on the other hand, it completes key components optimization analysis which is based on genetic algorithm optimization.


2011 ◽  
Vol 121-126 ◽  
pp. 1744-1748
Author(s):  
Xiang Yang Jin ◽  
Tie Feng Zhang ◽  
Li Li Zhao ◽  
He Teng Wang ◽  
Xiang Yi Guan

To determine the efficiency, load-bearing capacity and fatigue life of beveloid gears with intersecting axes, we design a mechanical gear test bed with closed power flow. To test the quality of its structure and predict its overall performance, we establish a three-dimensional solid model for various components based on the design parameters and adopt the technology of virtual prototyping simulation to conduct kinematics simulation on it. Then observe and verify the interactive kinematic situation of each component. Moreover, the finite element method is also utilized to carry out structural mechanics and dynamics analysis on some key components. The results indicate that the test bed can achieve the desired functionality, and the static and dynamic performance of some key components can also satisfy us.


2010 ◽  
Vol 34-35 ◽  
pp. 192-196
Author(s):  
Jiang Zhu ◽  
Limin Chen ◽  
Ping Yuan Xi

The impeller is the important pneumatic part of centrifugal fan, and its structure performances are key factors which affect the whole performances of fan. The CAD module of centrifugal fan can realize the automation of aerodynamic force calculation. According to demands, computer can automatically complete aerodynamic force calculation and further determine major geometric parameters of impeller of fan. Speed coefficient and diametral quotient are two important parameters reflecting the character of ventilating fan. The relation curve between the speed coefficient and diametral quotient of various fans is plotted in this paper. The CAD module of impeller of centrifugal fan can realize such functions as aerodynamic design and parameterization drawing of impeller, and can accomplish rapid response from receiving design parameters to profiled impeller of fan, so that it can improve the quality of drawing.


2009 ◽  
Vol 76-78 ◽  
pp. 252-257
Author(s):  
Tian Biao Yu ◽  
Ya Dong Gong ◽  
Wan Shan Wang

In order to improve quality of deep hole machining, a new method of deep hole honing based on squeeze film damping technology is put forward. For analysis effect on damper parameters on honing quality, motion differential equation of honing spindle with a squeeze film damper (SFD) is established according to D' Alembert principle and according simulations are studied. Spindle of deep hole honing with a SFD is designed based on the result of simulations and experiments are carried on. Experimental result shows that SFD with reasonable design parameters has excellent damping function to honing spindle, and it can make the vibration of honing spindle reduced 20%~30% and the quality of deep hole machining improved 10%~20%.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amir Moslemi ◽  
Mahmood Shafiee

PurposeIn a multistage process, the final quality in the last stage not only depends on the quality of the task performed in that stage but is also dependent on the quality of the products and services in intermediate stages as well as the design parameters in each stage. One of the most efficient statistical approaches used to model the multistage problems is the response surface method (RSM). However, it is necessary to optimize each response in all stages so to achieve the best solution for the whole problem. Robust optimization can produce very accurate solutions in this case.Design/methodology/approachIn order to model a multistage problem, the RSM is often used by the researchers. A classical approach to estimate response surfaces is the ordinary least squares (OLS) method. However, this method is very sensitive to outliers. To overcome this drawback, some robust estimation methods have been presented in the literature. In optimization phase, the global criterion (GC) method is used to optimize the response surfaces estimated by the robust approach in a multistage problem.FindingsThe results of a numerical study show that our proposed robust optimization approach, considering both the sum of square error (SSE) index in model estimation and also GC index in optimization phase, will perform better than the classical full information maximum likelihood (FIML) estimation method.Originality/valueTo the best of the authors’ knowledge, there are few papers focusing on quality-oriented designs in the multistage problem by means of RSM. Development of robust approaches for the response surface estimation and also optimization of the estimated response surfaces are the main novelties in this study. The proposed approach will produce more robust and accurate solutions for multistage problems rather than classical approaches.


2013 ◽  
Vol 8-9 ◽  
pp. 277-284
Author(s):  
Olar Radu ◽  
Traian Onet

The nanometric scale researches results can be found, in present, in every industry domains, due to the effects of the new products, obtained on the basis of this researches. In the concrete industry, the research goal at this level is to obtain, finally, a material with new features, whose structural behavior to be considerably better than of the current one. Basically, it aims to achieve, using nanotechnologies, a new structural material for constructions, starting from the current concrete advantages (good compressive strength, durability, etc.), eliminating the disadvantages (low tensile resistance, cracks, etc.), and controlling, in the same time, the costs. Thus, in this paper are presented the required parameters in order to obtain this kind of material, by highlighting the nanocomponents characteristics and the quantities that are used to achieve the expected quality requirements. The real time influence of these nanocomponents on the quality of the studied material can be observed using a dedicated software, specially developed for this purpose.


1975 ◽  
Vol 97 (4) ◽  
pp. 408-416 ◽  
Author(s):  
J. K. Hedrick ◽  
R. J. Ravera ◽  
J. R. Anderes

In this paper the ride quality of a vehicle traversing an elevated guideway is related directly to guideway construction tolerances and design parameters. Moreover, the construction tolerances are modeled in terms familiar to a guideway contractor. The tolerances modeled for an elevated, two-span semicontinuous, concrete guideway are: surface finish, camber deviations, pier survey errors, and pier settlement. The major design parameters relating to live-load deflection, stiffness (material and cross-section), and pier spacing are included. A general technique is presented for relating these tolerances to vehicle ride quality by means of a digital computer simulation. Various ride quality criteria are considered, including rms acceleration, acceleration spectral density, acceleration frequency decomposition, and a deterministic state space boundary. Numerical results are presented for a particular vehicle-guideway configuration and as such are valid only for the system considered. It is shown that for this system, equivalent ride quality can be maintained while adjusting the various construction tolerances. This trade-off capability allows the contractor to choose the least costly combination of tolerance parameters.


Author(s):  
Teemu Turunen-Saaresti ◽  
Ahti Jaatinen

In this paper the effect of the tip clearance was studied with six different centrifugal compressors and data available in literature. The changes in the overall performance of the compressor stage were examined. The aim was to study the influence of the different design parameters to the tip clearance loss. It was evident by the previous studies that the sensitivity of the centrifugal compressor to the tip clearance loss varies with different designs. However, for the designer it is important to know the effect of the tip clearance loss in order to initially evaluate the quality of different designs. Analysis of the data demonstrated that no clear correlation between the sensitivity of the tip clearance loss and the specific speed, the diffusion ratio, the blade number and the ratio of blade heights exists.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 466 ◽  
Author(s):  
Yiqiao Wang ◽  
Wolf-Dieter Müller ◽  
Adam Rumjahn ◽  
Andreas Schwitalla

In this review, we discuss the parameters of fused deposition modeling (FDM) technology used in finished parts made from polyether ether ketone (PEEK) and also the possibility of printing small PEEK parts. The published articles reporting on 3D printed PEEK implants were obtained using PubMed and search engines such as Google Scholar including references cited therein. The results indicate that although many have been experiments conducted on PEEK 3D printing, the consensus on a suitable printing parameter combination has not been reached and optimized parameters for printing worth pursuing. The printing of reproducible tiny-sized PEEK parts with high accuracy has proved to be possible in our experiments. Understanding the relationships among material properties, design parameters, and the ultimate performance of finished objects will be the basis for further improvement of the quality of 3D printed medical devices based on PEEK and to expand the polymers applications.


Sign in / Sign up

Export Citation Format

Share Document