A Comparison of Transcriptomes Between Germinating Seeds and Growing Axillary Buds of Arabidopsis

2015 ◽  
pp. 223-233
Author(s):  
Dawei Yan ◽  
Kiyoshi Tatematsu ◽  
Kazumi Nakabayashi ◽  
Akira Endo ◽  
Masanori Okamoto ◽  
...  
1994 ◽  
Vol 92 (3) ◽  
pp. 443-450 ◽  
Author(s):  
Steffen Streller ◽  
Stanislaw Karpinski ◽  
Jan-Erik Hallgren ◽  
Gunnar Wingsle

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Elena O. Vidyagina ◽  
Nikolay N. Kharchenko ◽  
Konstantin A. Shestibratov

Axillary buds of in vitro microshoots were successfully frozen at –196 °C by the one-step freezing method using the protective vitrification solution 2 (PVS2). Microshoots were taken from 11 transgenic lines and three wild type lines. Influence of different explant pretreatments were analyzed from the point of their influence towards recovery after cryopreservation. It was found out that the use of axillary buds as explants after removal of the apical one increases recovery on average by 8%. The cultivation on growth medium of higher density insignificantly raises the regenerants survival rate. Pretreatment of the osmotic fluid (OF) shows the greatest influence on the survival rate. It leads to the increase in survival rate by 20%. The cryopreservation technology providing regenerants average survival rate of 83% was developed. It was based on the experimental results obtained with explant pretreatment. Incubation time in liquid nitrogen did not affect the explants survival rate after thawing. After six months cryostorage of samples their genetic variability was analyzed. Six variable simple sequence repeat (SSR) loci were used to analyze genotype variability after the freezing-thawing procedure. The microsatellite analysis showed the genetic status identity of plants after cryopreservation and of the original genotypes. The presence of the recombinant gene in the transgenic lines after cryostorage were confirmed so as the interclonal variation in the growth rate under greenhouse conditions. The developed technique is recommended for long-term storage of various breeding and genetically modified lines of aspen plants, as it provides a high percentage of explants survival with no changes in genotype.


2021 ◽  
Vol 22 (10) ◽  
pp. 5069
Author(s):  
Naoto Sano ◽  
Annie Marion-Poll

Abscisic acid (ABA) is a key hormone that promotes dormancy during seed development on the mother plant and after seed dispersal participates in the control of dormancy release and germination in response to environmental signals. The modulation of ABA endogenous levels is largely achieved by fine-tuning, in the different seed tissues, hormone synthesis by cleavage of carotenoid precursors and inactivation by 8′-hydroxylation. In this review, we provide an overview of the current knowledge on ABA metabolism in developing and germinating seeds; notably, how environmental signals such as light, temperature and nitrate control seed dormancy through the adjustment of hormone levels. A number of regulatory factors have been recently identified which functional relationships with major transcription factors, such as ABA INSENSITIVE3 (ABI3), ABI4 and ABI5, have an essential role in the control of seed ABA levels. The increasing importance of epigenetic mechanisms in the regulation of ABA metabolism gene expression is also described. In the last section, we give an overview of natural variations of ABA metabolism genes and their effects on seed germination, which could be useful both in future studies to better understand the regulation of ABA metabolism and to identify candidates as breeding materials for improving germination properties.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 828
Author(s):  
Aleksandra Skalska ◽  
Elzbieta Wolny ◽  
Manfred Beckmann ◽  
John H. Doonan ◽  
Robert Hasterok ◽  
...  

Seed germination is a complex process during which a mature seed resumes metabolic activity to prepare for seedling growth. In this study, we performed a comparative metabolomic analysis of the embryo and endosperm using the community standard lines of three annual Brachypodium species, i.e., B. distachyon (Bd) and B. stacei (Bs) and their natural allotetraploid B. hybridum (BdBs) that has wider ecological range than the other two species. We explored how far the metabolomic impact of allotetraploidization would be observable as over-lapping changes at 4, 12, and 24 h after imbibition (HAI) with water when germination was initiated. Metabolic changes during germination were more prominent in Brachypodium embryos than in the endosperm. The embryo and endosperm metabolomes of Bs and BdBs were similar, and those of Bd were distinctive. The Bs and BdBs embryos showed increased levels of sugars and the tricarboxylic acid cycle compared to Bd, which could have been indicative of better nutrient mobilization from the endosperm. Bs and BdBs also showed higher oxalate levels that could aid nutrient transfer through altered cellular events. In Brachypodium endosperm, the thick cell wall, in addition to starch, has been suggested to be a source of nutrients to the embryo. Metabolites indicative of sugar metabolism in the endosperm of all three species were not prominent, suggesting that mobilization mostly occurred prior to 4 HAI. Hydroxycinnamic and monolignol changes in Bs and BdBs were consistent with cell wall remodeling that arose following the release of nutrients to the respective embryos. Amino acid changes in both the embryo and endosperm were broadly consistent across the species. Taking our data together, the formation of BdBs may have maintained much of the Bs metabolome in both the embryo and endosperm during the early stages of germination. In the embryo, this conserved Bs metabolome appeared to include an elevated sugar metabolism that played a vital role in germination. If these observations are confirmed in the future with more Brachypodium accessions, it would substantiate the dominance of the Bs metabolome in BdBs allotetraploidization and the use of metabolomics to suggest important adaptive changes.


Experiments were recently reported showing that, in young seedlings of Pisum sativum , the complete inhibiting effect which the shoot exerts upon its axillary buds comes entirely or almost entirely from three or four of its developing leave acting together (6). A single developing leaf was found usually to inhibit only partially—that is to say, sufficiently to delay the growth of an axillary bud below it, but not to check it completely. The strength of this partial inhibiting effect was measured by the retardation of the outgrowth of the axillary buds of the first or lowest leaf, as compared with their growth in completely defoliated controls. Comparisons were further made of the inhibiting effects of single young leaves of equal sizes near the apex in seedlings of different ages and heights, and it was found that in very young short seedlings the inhibiting effect was very slight or inappreciable, although in seedlings of a height of about 30 mm. or more (but still possessing well filled cotyledons) the effect was strong.


Phytotaxa ◽  
2015 ◽  
Vol 219 (2) ◽  
pp. 174
Author(s):  
Fabiana Firetti Leggieri ◽  
DIEGO DEMARCO ◽  
LÚCIA G. LOHMANN

The Atlantic Forest of Brazil includes one of the highest species diversity and endemism in the planet, representing a priority for biodiversity conservation. A new species of Anemopaegma from the Atlantic Forest of Brazil is here described, illustrated and compared to its closest relatives. Anemopaegma nebulosum Firetti-Leggieri & L.G. Lohmann has been traditionally treated as a morph of Anemopaegma prostratum; however, additional morphological and anatomical studies indicated that A. nebulosum differs significantly from A. prostratum and is best treated as a separate species. More specifically, A. nebulosum is characterized by elliptic and coriaceous leaflets (vs. ovate to orbicular and membranaceous in A. prostratum), smaller leaflet blades (3.6–5.5 x 2.0–3.0 cm vs. 6.7–13.0 x 4.2–8.4 cm in A. prostratum), orbicular prophylls of the axillary buds (vs. no prophylls in A. prostratum), solitary flowers (vs. multi-flowered axillary racemes in A. prostratum) and a gibbous corolla (vs. infundibuliform corollas in A. prostratum). In addition, A. nebulosum differs from A. prostratum anatomically in having thicker leaflet blades composed of two to four layers of palisade parenchyma (vs. one to three layers in A. prostratum), and seven to eight layers in the spongy parenchyma (vs. six to eight layers in A. prostratum). A key for the identification of all species of Anemopaegma from the Atlantic Forest of Brazil is presented.


Sign in / Sign up

Export Citation Format

Share Document