Role of Circadian Rhythms and Seasonal Variation in BP Levels

Author(s):  
Pietro Amedeo Modesti ◽  
Danilo Malandrino
2014 ◽  
Vol 10 (3) ◽  
pp. 214-222 ◽  
Author(s):  
Alfred Lewy ◽  
Joshua Tutek ◽  
Liska Havel ◽  
Macia Nikia

1998 ◽  
Vol 31 ◽  
pp. S220
Author(s):  
Hitoki Ohtsuka ◽  
Yoshiaki Miyake ◽  
Ichiro Murai ◽  
Kazuo Satoh ◽  
Katsuhiko Sakamoto ◽  
...  
Keyword(s):  

Author(s):  
Chenzhong Xu ◽  
Jin Zhang ◽  
Jie Zhang ◽  
Baohua Liu

AbstractN-acetyltransferase 10 catalyzes RNA N4-acetylcytidine (ac4C) modifications and thus regulates RNA stability and translation efficiency. However, the deacetylase for ac4C is unknown. SIRT7 was initially identified as an NAD+-dependent protein deacetylase and plays essential roles in genome stability, circadian rhythms, metabolism, and aging. In this study, we identified SIRT7 as a deacetylase of the ac4C of ribosomal (r)RNA for the first time and found it to be NAD+-independent. Our data highlight the important role of SIRT7 in rRNA ac4C modification and suggest an additional epitranscriptional regulation of aging.


2007 ◽  
Vol 7 ◽  
pp. 194-202 ◽  
Author(s):  
Colleen A. McClung

Drug addiction is a devastating disease that affects millions of individuals worldwide. Through better understanding of the genetic variations that create a vulnerability for addiction and the molecular mechanisms that underlie the progression of addiction, better treatment options can be created for those that suffer from this condition. Recent studies point to a link between abnormal or disrupted circadian rhythms and the development of addiction. In addition, studies suggest a role for specific genes that make up the molecular clock in the regulation of drug sensitivity, sensitization, and reward. The influence of circadian genes and rhythms on drug-induced behaviors may be mediated through the mesolimbic dopaminergic system. This system has long been implicated in the development of addiction, and recent evidence supports a regulatory role for the brain's central pacemaker and circadian gene expression in the regulation of dopaminergic transmission. This review highlights the association between circadian genes and drug addiction, and the possible role of the mesolimbic dopaminergic system in this association.


2006 ◽  
Vol 3 (1) ◽  
pp. 93-101 ◽  
Author(s):  
H. Hakola ◽  
V. Tarvainen ◽  
J. Bäck ◽  
H. Ranta ◽  
B. Bonn ◽  
...  

Abstract. The seasonal variation of mono-and sesquiterpene emission rates of Scots pine was measured from April to October in 2004. The emission rates were measured daily in the afternoons with the exception of weekends. Emissions were measured from two branches; one of them was debudded in May (branch A), while the other was allowed to grow new needles (branch B). The monoterpene emission pattern remained almost constant throughout the measurement period, Δ3-carene being the dominant monoterpene (50-70% of the VOC emission). The standard monoterpene emission potential (30°C) was highest during early summer in June (the average of the two branches 1.35 µg g-1h-1) and lowest during early autumn in September (the average of the two branches 0.20 µg g-1h-1. The monoterpene emission potential of branch A remained low also during October, whereas the emission potential of branch B was very high in October. The sesquiterpenes were mainly emitted during mid summer, the dominant sesquiterpene being β-caryophyllene. Branch A had a higher sesquiterpene emission potential than branch B and the emission maximum occurred concomitant with the high concentration of airborne pathogen spores suggesting a potential defensive role of the sesquiterpene emissions. The sesquiterpene emissions were well correlated with linalool and 1,8-cineol emissions, but not with monoterpenes. Sesquiterpene and 1,8-cineol emissions were equally well described by the temperature dependent and the temperature and light dependent algorithms. This is due to the saturation of the light algorithm as the measurements were always conducted during high light conditions.


2022 ◽  
Author(s):  
Yanli Xiang ◽  
Thomas Sapir ◽  
Pauline Rouillard ◽  
Marina Ferrand ◽  
Jose M Jimenez-Gomez

Many biological processes follow circadian rhythmicity and are controlled by the circadian clock. Predictable environmental changes such as seasonal variation in photoperiod can modulate circadian rhythms, allowing organisms to adjust to the time of the year. Modification of circadian clocks is especially relevant in crops to enhance their cultivability in specific regions by changing their sensibility to photoperiod. In tomato, the appearance of mutations in EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1, Solyc09g075080) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2 (LNK2, Solyc01g068560) during domestication delayed its circadian rhythms, and allowed its expansion outside its equatorial origin. Here we study how variation in circadian rhythms in tomato affects its perception of photoperiod. To do this, we create near isogenic lines carrying combinations of wild alleles of EID1 and LNK2 and perform transcriptomic profiling under two different photoperiods. We observe that EID1, but not LNK2, has a large effect on the tomato transcriptome and its response to photoperiod. This large effect of EID1 is likely a consequence of the global phase shift elicited by this gene in tomato's circadian rhythms.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2640 ◽  
Author(s):  
Ramiro J.A. Ovejero Aguilar ◽  
Graciela A. Jahn ◽  
Mauricio Soto-Gamboa ◽  
Andrés J. Novaro ◽  
Pablo Carmanchahi

BackgroundProviding the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase.MethodsAll of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations.ResultsAs expected, there was a marked adrenal (p-value = .3.4e−12) and gonadal (p-value = 0.002656) response due to seasonal variation inLama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual’s energetic demands according to life-history strategies. This is a remarkable result because no inhibition was found between the axes as theory suggests. Finally, the dataset was used to build a reactive scope model for guanacos.DiscussionGuanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal’s life—the mating period—when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success.


Sign in / Sign up

Export Citation Format

Share Document