scholarly journals Interaction between photoperiod and variation in circadian rhythms in tomato

2022 ◽  
Author(s):  
Yanli Xiang ◽  
Thomas Sapir ◽  
Pauline Rouillard ◽  
Marina Ferrand ◽  
Jose M Jimenez-Gomez

Many biological processes follow circadian rhythmicity and are controlled by the circadian clock. Predictable environmental changes such as seasonal variation in photoperiod can modulate circadian rhythms, allowing organisms to adjust to the time of the year. Modification of circadian clocks is especially relevant in crops to enhance their cultivability in specific regions by changing their sensibility to photoperiod. In tomato, the appearance of mutations in EMPFINDLICHER IM DUNKELROTEN LICHT 1 (EID1, Solyc09g075080) and NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 2 (LNK2, Solyc01g068560) during domestication delayed its circadian rhythms, and allowed its expansion outside its equatorial origin. Here we study how variation in circadian rhythms in tomato affects its perception of photoperiod. To do this, we create near isogenic lines carrying combinations of wild alleles of EID1 and LNK2 and perform transcriptomic profiling under two different photoperiods. We observe that EID1, but not LNK2, has a large effect on the tomato transcriptome and its response to photoperiod. This large effect of EID1 is likely a consequence of the global phase shift elicited by this gene in tomato's circadian rhythms.

2020 ◽  
Vol 82 (1) ◽  
pp. 391-412 ◽  
Author(s):  
Charles Nosal ◽  
Anna Ehlers ◽  
Jeffrey A. Haspel

Circadian rhythms are daily cycles in biological function that are ubiquitous in nature. Understood as a means for organisms to anticipate daily environmental changes, circadian rhythms are also important for orchestrating complex biological processes such as immunity. Nowhere is this more evident than in the respiratory system, where circadian rhythms in inflammatory lung disease have been appreciated since ancient times. In this focused review we examine how emerging research on circadian rhythms is being applied to the study of fundamental lung biology and respiratory disease. We begin with a general introduction to circadian rhythms and the molecular circadian clock that underpins them. We then focus on emerging data tying circadian clock function to immunologic activities within the respiratory system. We conclude by considering outstanding questions about biological timing in the lung and how a better command of chronobiology could inform our understanding of complex lung diseases.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yun-Hung Kuang ◽  
Yu-Fu Fang ◽  
Shau-Ching Lin ◽  
Shin-Fu Tsai ◽  
Zhi-Wei Yang ◽  
...  

Abstract Background The impact of climate change on insect resistance genes is elusive. Hence, we investigated the responses of rice near-isogenic lines (NILs) that carry resistance genes against brown planthopper (BPH) under different environmental conditions. Results We tested these NILs under three environmental settings (the atmospheric temperature with corresponding carbon dioxide at the ambient, year 2050 and year 2100) based on the Intergovernmental Panel on Climate Change prediction. Comparing between different environments, two of nine NILs that carried a single BPH-resistant gene maintained their resistance under the environmental changes, whereas two of three NILs showed gene pyramiding with two maintained BPH resistance genes despite the environmental changes. In addition, two NILs (NIL-BPH17 and NIL-BPH20) were examined in their antibiosis and antixenosis effects under these environmental changes. BPH showed different responses to these two NILs, where the inhibitory effect of NIL-BPH17 on the BPH growth and development was unaffected, while NIL-BPH20 may have lost its resistance during the environmental changes. Conclusion Our results indicate that BPH resistance genes could be affected by climate change. NIL-BPH17 has a strong inhibitory effect on BPH feeding on phloem and would be unaffected by environmental changes, while NIL-BPH20 would lose its ability during the environmental changes.


2021 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Andy W. C. Man ◽  
Huige Li ◽  
Ning Xia

Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.


2018 ◽  
Vol 8 (6) ◽  
pp. 20180038 ◽  
Author(s):  
Nicolas M. Schmelling ◽  
Ilka M. Axmann

Precisely timing the regulation of gene expression by anticipating recurring environmental changes is a fundamental part of global gene regulation. Circadian clocks are one form of this regulation, which is found in both eukaryotes and prokaryotes, providing a fitness advantage for these organisms. Whereas many different eukaryotic groups harbour circadian clocks, cyanobacteria are the only known oxygenic phototrophic prokaryotes to regulate large parts of their genes in a circadian fashion. A decade of intensive research on the mechanisms and functionality using computational and mathematical approaches in addition to the detailed biochemical and biophysical understanding make this the best understood circadian clock. Here, we summarize the findings and insights into various parts of the cyanobacterial circadian clock made by mathematical modelling. These findings have implications for eukaryotic circadian research as well as synthetic biology harnessing the power and efficiency of global gene regulation.


2020 ◽  
Author(s):  
Yangbo Xiao ◽  
Ye Yuan ◽  
Mariana Jimenez ◽  
Neeraj Soni ◽  
Swathi Yadlapalli

ABSTRACTCircadian clocks regulate ∼24 hour oscillations in gene expression, behavior, and physiology. While the molecular and neural mechanisms of circadian rhythms are well characterized, how cellular organization of clock components controls circadian clock regulation remains poorly understood. Here, we elucidate how clock proteins regulate circadian rhythms by controlling the spatiotemporal organization of clock genes. Using high-resolution live imaging techniques we demonstrate that Drosophila clock proteins are concentrated in a few discrete foci and are organized at the nuclear envelope; these results are in contrast to longstanding expectations that clock proteins are diffusely distributed in the nucleus. We also show that clock protein foci are highly dynamic and change in number, size, and localization over the circadian cycle. Further, we demonstrate that clock genes are positioned at the nuclear periphery by the clock proteins precisely during the circadian repression phase, suggesting that subnuclear localization of clock genes plays an important role in the control of rhythmic gene expression. Finally, we show that Lamin B receptor, a nuclear envelope protein, is required for peripheral localization of clock protein foci and clock genes and for normal circadian rhythms. These results reveal that clock proteins form dynamic nuclear foci and play a hitherto unexpected role in the subnuclear reorganization of clock genes to control circadian rhythms, identifying a novel mechanism of circadian regulation. Our results further suggest a new role for clock protein foci in the clustering of clock-regulated genes during the repression phase to control gene co-regulation and circadian rhythms.SIGNIFICANCEAlmost all living organisms have evolved circadian clocks to tell time. Circadian clocks regulate ∼24-hour oscillations in gene expression, behavior and physiology. Here, we reveal the surprisingly sophisticated spatiotemporal organization of clock proteins and clock genes and its critical role in circadian clock function. We show, in contrast to current expectations, that clock proteins are concentrated in a few discrete, dynamic nuclear foci at the nuclear envelope during the repression phase. Further, we uncovered several unexpected features of clock protein foci, including their role in positioning the clock genes at the nuclear envelope precisely during the repression phase to enable circadian rhythms. These studies provide fundamental new insights into the cellular mechanisms of circadian rhythms and establish direct links between nuclear organization and circadian clocks.


1991 ◽  
Vol 261 (4) ◽  
pp. R928-R933 ◽  
Author(s):  
D. M. Edgar ◽  
W. C. Dement

Circadian rhythm entrainment has long been thought to depend exclusively on periodic cues in the external environment. However, evidence now suggests that appropriately timed vigorous activity may also phase shift the circadian clock. Previously it was not known whether levels of exercise/activity associated with spontaneous behavior provided sufficient feedback to phase shift or synchronize circadian rhythms. The present study investigated this issue by monitoring the sleep-wake, drinking, and wheel-running circadian rhythms of mice (Mus musculus) during unrestricted access to running wheels and when free wheel rotation was limited to either 12- or 6-h intervals with a fixed period of 24 h. Wheel rotation was controlled remotely. Mice spontaneously ran in wheels during scheduled access, and free-running sleep-wake and drinking circadian rhythms became entrained to scheduled exercise in 11 of 15 animals. However, steady-state entrainment was achieved only when exercise commenced several hours into the subjective night. The temporal placement of running during entrainment was related (r = 0.7003, P less than 0.02) to free-running period before entrainment. Mice with a free-running period less than 23.0 h did not entrain but exhibited relative coordination between free-running variables and the wheel availability schedule. Thus the circadian timekeeping system responds to temporal feedback arising from the timing of volitional exercise/activity, suggesting that the biological clock not only is responsive to periodic geophysical events in the external environment but also derives physiological feedback from the spontaneous activity behaviors of the organism.


2015 ◽  
Vol 51 (26) ◽  
pp. 5672-5675 ◽  
Author(s):  
Lilia Gurevich ◽  
Rivka Cohen-Luria ◽  
Nathaniel Wagner ◽  
Gonen Ashkenasy

Synthetic network imitating the KaiABC circadian clock from the cyanobacteria S. elongatus was studied in silico and displayed robust behaviour under a wide set of environmental conditions.


2018 ◽  
Vol 45 (4) ◽  
pp. 393 ◽  
Author(s):  
Chenjerai I. Muchapirei ◽  
Shannon-Leigh Valentine ◽  
Laura C. Roden

There are regular, and therefore predictable, environmental changes on Earth due to the rotation of the planet on its axis and its orbit around the sun. Thus organisms have adapted their metabolism, physiology and behaviour to minimise stresses caused by unfavourable conditions and maximise efficiency of growth. Additionally, most organisms are able to anticipate these changes and accordingly maximise metabolic efficiency and growth, because they have a complex biological time-keeping system commonly referred to as the circadian clock. Multiple pathways in plants are organised in a temporal manner through circadian clock-regulation of gene transcription and post-translational modifications. What is becoming more apparent is the bidirectional nature of interactions between the clock and stress response pathways. Until recently, the focus of many studies had been on the unidirectional, hierarchical control of biological processes by the circadian clock, and impacts on the clock in response to environmental stress had been largely ignored. Studies of interactions of the circadian clock with the environment have primarily been to understand mechanisms of entrainment. We review the evidence and implications of the reciprocal interactions between the clock and the environment.


2018 ◽  
Vol 60 (3) ◽  
pp. R115-R130 ◽  
Author(s):  
Paul de Goede ◽  
Jakob Wefers ◽  
Eline Constance Brombacher ◽  
Patrick Schrauwen ◽  
Andries Kalsbeek

Many physiological processes are regulated with a 24-h periodicity to anticipate the environmental changes of daytime to nighttime and vice versa. These 24-h regulations, commonly termed circadian rhythms, among others control the sleep–wake cycle, locomotor activity and preparation for food availability during the active phase (daytime for humans and nighttime for nocturnal animals). Disturbing circadian rhythms at the organ or whole-body level by social jetlag or shift work, increases the risk to develop chronic metabolic diseases such as type 2 diabetes mellitus. The molecular basis of this risk is a topic of increasing interest. Mitochondria are essential organelles that produce the majority of energy in eukaryotes by converting lipids and carbohydrates into ATP through oxidative phosphorylation. To adapt to the ever-changing environment, mitochondria are highly dynamic in form and function and a loss of this flexibility is linked to metabolic diseases. Interestingly, recent studies have indicated that changes in mitochondrial morphology (i.e., fusion and fission) as well as generation of new mitochondria are dependent on a viable circadian clock. In addition, fission and fusion processes display diurnal changes that are aligned to the light/darkness cycle. Besides morphological changes, mitochondrial respiration also displays diurnal changes. Disturbing the molecular clock in animal models leads to abrogated mitochondrial rhythmicity and altered respiration. Moreover, mitochondrial-dependent production of reactive oxygen species, which plays a role in cellular signaling, has also been linked to the circadian clock. In this review, we will summarize recent advances in the study of circadian rhythms of mitochondria and how this is linked to the molecular circadian clock.


2020 ◽  
Vol 6 (2) ◽  
pp. 71-80
Author(s):  
Michelle Werdann ◽  
Yong Zhang

The circadian clock controls daily rhythms in animal physiology, metabolism, and behavior, such as the sleep‐wake cycle. Disruption of circadian rhythms has been revealed in many diseases including neurodegenerative disorders. Interestingly, patients with many neurodegenerative diseases often show problems with circadian clocks even years before other symptoms develop. Here we review the recent studies identifying the association between circadian rhythms and several major neurodegenerative disorders. Early intervention of circadian rhythms may benefit the treatment of neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document