scholarly journals The Use of Machine Learning for Correlation Analysis of Sentiment and Weather Data

Author(s):  
Hu Li ◽  
Zahra Jadidi ◽  
Jinyan Chen ◽  
Jun Jo
2021 ◽  
pp. 1-15
Author(s):  
O. Basturk ◽  
C. Cetek

ABSTRACT In this study, prediction of aircraft Estimated Time of Arrival (ETA) is proposed using machine learning algorithms. Accurate prediction of ETA is important for management of delay and air traffic flow, runway assignment, gate assignment, collaborative decision making (CDM), coordination of ground personnel and equipment, and optimisation of arrival sequence etc. Machine learning is able to learn from experience and make predictions with weak assumptions or no assumptions at all. In the proposed approach, general flight information, trajectory data and weather data were obtained from different sources in various formats. Raw data were converted to tidy data and inserted into a relational database. To obtain the features for training the machine learning models, the data were explored, cleaned and transformed into convenient features. New features were also derived from the available data. Random forests and deep neural networks were used to train the machine learning models. Both models can predict the ETA with a mean absolute error (MAE) less than 6min after departure, and less than 3min after terminal manoeuvring area (TMA) entrance. Additionally, a web application was developed to dynamically predict the ETA using proposed models.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Tsehay Admassu Assegie ◽  
S. J. Sushma ◽  
B. G. Bhavya ◽  
S. Padmashree

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 303
Author(s):  
Eloise S. Fogarty ◽  
David L. Swain ◽  
Greg M. Cronin ◽  
Luis E. Moraes ◽  
Derek W. Bailey ◽  
...  

In the current study, a simulated online parturition detection model is developed and reported. Using a machine learning (ML)-based approach, the model incorporates data from Global Navigation Satellite System (GNSS) tracking collars, accelerometer ear tags and local weather data, with the aim of detecting parturition events in pasture-based sheep. The specific objectives were two-fold: (i) determine which sensor systems and features provide the most useful information for lambing detection; (ii) evaluate how these data might be integrated using ML classification to alert to a parturition event as it occurs. Two independent field trials were conducted during the 2017 and 2018 lambing seasons in New Zealand, with the data from each used for ML training and independent validation, respectively. Based on objective (i), four features were identified as exerting the greatest importance for lambing detection: mean distance to peers (MDP), MDP compared to the flock mean (MDP.Mean), closest peer (CP) and posture change (PC). Using these four features, the final ML was able to detect 27% and 55% of lambing events within ±3 h of birth with no prior false positives. If the model sensitivity was manipulated such that earlier false positives were permissible, this detection increased to 91% and 82% depending on the requirement for a single alert, or two consecutive alerts occurring. To identify the potential causes of model failure, the data of three animals were investigated further. Lambing detection appeared to rely on increased social isolation behaviour in addition to increased PC behaviour. The results of the study support the use of integrated sensor data for ML-based detection of parturition events in grazing sheep. This is the first known application of ML classification for the detection of lambing in pasture-based sheep. Application of this knowledge could have significant impacts on the ability to remotely monitor animals in commercial situations, with a logical extension of the information for remote monitoring of animal welfare.


2021 ◽  
Author(s):  
El houssaine Bouras ◽  
Lionel Jarlan ◽  
Salah Er-Raki ◽  
Riad Balaghi ◽  
Abdelhakim Amazirh ◽  
...  

<p>Cereals are the main crop in Morocco. Its production exhibits a high inter-annual due to uncertain rainfall and recurrent drought periods. Considering the importance of this resource to the country's economy, it is thus important for decision makers to have reliable forecasts of the annual cereal production in order to pre-empt importation needs. In this study, we assessed the joint use of satellite-based drought indices, weather (precipitation and temperature) and climate data (pseudo-oscillation indices including NAO and the leading modes of sea surface temperature -SST- in the mid-latitude and in the tropical area) to predict cereal yields at the level of the agricultural province using machine learning algorithms (Support Vector Machine -SVM-, Random forest -FR- and eXtreme Gradient Boost -XGBoost-) in addition to Multiple Linear Regression (MLR). Also, we evaluate the models for different lead times along the growing season from January (about 5 months before harvest) to March (2 months before harvest). The results show the combination of data from the different sources outperformed the use of a single dataset; the highest accuracy being obtained when the three data sources were all considered in the model development. In addition, the results show that the models can accurately predict yields in January (5 months before harvesting) with an R² = 0.90 and RMSE about 3.4 Qt.ha<sup>-1</sup>.  When comparing the model’s performance, XGBoost represents the best one for predicting yields. Also, considering specific models for each province separately improves the statistical metrics by approximately 10-50% depending on the province with regards to one global model applied to all the provinces. The results of this study pointed out that machine learning is a promising tool for cereal yield forecasting. Also, the proposed methodology can be extended to different crops and different regions for crop yield forecasting.</p>


2020 ◽  
Vol 8 (37) ◽  
pp. 13091-13091
Author(s):  
Lihao Chen ◽  
Ben Xu ◽  
Jia Chen ◽  
Ke Bi ◽  
Changjiao Li ◽  
...  

Correction for ‘Ensemble-machine-learning-based correlation analysis of internal and band characteristics of thermoelectric materials’ by Lihao Chen et al., J. Mater. Chem. C, 2020, DOI: 10.1039/d0tc02855j.


2019 ◽  
Vol 14 (2) ◽  
pp. 97-106
Author(s):  
Ning Yan ◽  
Oliver Tat-Sheung Au

Purpose The purpose of this paper is to make a correlation analysis between students’ online learning behavior features and course grade, and to attempt to build some effective prediction model based on limited data. Design/methodology/approach The prediction label in this paper is the course grade of students, and the eigenvalues available are student age, student gender, connection time, hits count and days of access. The machine learning model used in this paper is the classical three-layer feedforward neural networks, and the scaled conjugate gradient algorithm is adopted. Pearson correlation analysis method is used to find the relationships between course grade and the student eigenvalues. Findings Days of access has the highest correlation with course grade, followed by hits count, and connection time is less relevant to students’ course grade. Student age and gender have the lowest correlation with course grade. Binary classification models have much higher prediction accuracy than multi-class classification models. Data normalization and data discretization can effectively improve the prediction accuracy of machine learning models, such as ANN model in this paper. Originality/value This paper may help teachers to find some clue to identify students with learning difficulties in advance and give timely help through the online learning behavior data. It shows that acceptable prediction models based on machine learning can be built using a small and limited data set. However, introducing external data into machine learning models to improve its prediction accuracy is still a valuable and hard issue.


Sign in / Sign up

Export Citation Format

Share Document