Hydrogel Scaffolds: Advanced Materials for Soft Tissue Re-growth

Author(s):  
Z. A. Abdul Hamid ◽  
A. Blencowe ◽  
J. Palmer ◽  
K. M. Abberton ◽  
W. A. Morrison ◽  
...  

2016 ◽  
Vol 69 (1) ◽  
pp. 2
Author(s):  
Goudappagouda ◽  
Vivek Chandrakant Wakchaure ◽  
Kayaramkodath Chandran Ranjeesh ◽  
Sukumaran Santhosh Babu

Supramolecular assembly of molecules leading to gelation of large amount of solvents is always a fascinating topic of research. In the very recent past, the exciting developments have marked hydrogels as intriguing materials with excellent features. Hydrogel scaffolds enable the accommodation of organic and/or inorganic guest materials to deliver diverse applications. Hydrogels have been exploited to generate soft materials with mechanical anisotropy, tunable rigidity, self-healing properties, as well as photocatalytic capabilities towards H2 production. Remarkably, the combination of a photocatalyst and a light-harvesting system in the gel matrix provides a unique means to photocatalytic H2 production. The biomimetic applications of hydrogels have also generated much attraction due to their potential demonstrations. The diverse applications underline the significance of such a soft gel medium to reach the final goal. Herein, important reports pertaining to the use of hydrogels as an effective way to generate advanced materials for biomimetic and energy-related issues are discussed.



Biomaterials ◽  
2010 ◽  
Vol 31 (25) ◽  
pp. 6454-6467 ◽  
Author(s):  
Zuratul A.A. Hamid ◽  
Anton Blencowe ◽  
Berkay Ozcelik ◽  
Jason A. Palmer ◽  
Geoffrey W. Stevens ◽  
...  


2011 ◽  
Vol 19 (7) ◽  
pp. 694-698 ◽  
Author(s):  
Su A. Park ◽  
Su Hee Lee ◽  
WanDoo Kim


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1977
Author(s):  
Kexin Nie ◽  
Shanshan Han ◽  
Jianmin Yang ◽  
Qingqing Sun ◽  
Xiaofeng Wang ◽  
...  

Soft tissue engineering has been seeking ways to mimic the natural extracellular microenvironment that allows cells to migrate and proliferate to regenerate new tissue. Therefore, the reconstruction of soft tissue requires a scaffold possessing the extracellular matrix (ECM)-mimicking fibrous structure and elastic property, which affect the cell functions and tissue regeneration. Herein, an effective method for fabricating nanofibrous hydrogel for soft tissue engineering is demonstrated using gelatin–hydroxyphenylpropionic acid (Gel–HPA) by electrospinning and enzymatic crosslinking. Gel–HPA fibrous hydrogel was prepared by crosslinking the electrospun fibers in ethanol-water solution with an optimized concentration of horseradish peroxidase (HRP) and H2O2. The prepared fibrous hydrogel held the soft and elastic mechanical property of hydrogels and the three-dimensional (3D) fibrous structure of electrospun fibers. It was proven that the hydrogel scaffolds were biocompatible, improving the cellular adhesion, spreading, and proliferation. Moreover, the fibrous hydrogel showed rapid biodegradability and promoted angiogenesis in vivo. Overall, this study represents a novel biomimetic approach to generate Gel–HPA fibrous hydrogel scaffolds which have excellent potential in soft tissue regeneration applications.



Biomaterials ◽  
2014 ◽  
Vol 35 (6) ◽  
pp. 1914-1923 ◽  
Author(s):  
Hoi Ki Cheung ◽  
Tim Tian Y. Han ◽  
Dale M. Marecak ◽  
John F. Watkins ◽  
Brian G. Amsden ◽  
...  


2020 ◽  
Vol 8 (1) ◽  
pp. 405-412 ◽  
Author(s):  
Maria M. Pérez-Madrigal ◽  
Joshua E. Shaw ◽  
Maria C. Arno ◽  
Judith A. Hoyland ◽  
Stephen M. Richardson ◽  
...  

Combining two biopolymers with the efficiency and rapid nature of the thiol–yne click reaction yields biocompatible matrices with superior properties.



Author(s):  
D. C. Swartzendruber ◽  
Norma L. Idoyaga-Vargas

The radionuclide gallium-67 (67Ga) localizes preferentially but not specifically in many human and experimental soft-tissue tumors. Because of this localization, 67Ga is used in clinical trials to detect humar. cancers by external scintiscanning methods. However, the fact that 67Ga does not localize specifically in tumors requires for its eventual clinical usefulness a fuller understanding of the mechanisms that control its deposition in both malignant and normal cells. We have previously reported that 67Ga localizes in lysosomal-like bodies, notably, although not exclusively, in macrophages of the spocytaneous AKR thymoma. Further studies on the uptake of 67Ga by macrophages are needed to determine whether there are factors related to malignancy that might alter the localization of 67Ga in these cells and thus provide clues to discovering the mechanism of 67Ga localization in tumor tissue.



Author(s):  
J. P. Brunschwig ◽  
R. M. McCombs ◽  
R. Mirkovic ◽  
M. Benyesh-Melnick

A new virus, established as a member of the herpesvirus group by electron microscopy, was isolated from spontaneously degenerating cell cultures derived from the kidneys and lungs of two normal tree shrews. The virus was found to replicate best in cells derived from the homologous species. The cells used were a tree shrew cell line, T-23, which was derived from a spontaneous soft tissue sarcoma. The virus did not multiply or did so poorly for a limited number of passages in human, monkey, rodent, rabbit or chick embryo cells. In the T-23 cells, the virus behaved as members of the subgroup B of herpesvirus, in that the virus remained primarily cell associated.



Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).



Sign in / Sign up

Export Citation Format

Share Document