Magnetorelaxometry for In-Vivo Quantification of Magnetic Nanoparticle Distributions after Magnetic Drug Targeting in a Rabbit Carcinoma Model

Author(s):  
Frank Wiekhorst ◽  
Maik Liebl ◽  
Uwe Steinhoff ◽  
Lutz Trahms ◽  
Stefan Lyer ◽  
...  
2020 ◽  
Vol 6 (3) ◽  
pp. 543-546
Author(s):  
Michael Fink ◽  
Stefan J. Rupitsch ◽  
Helmut Ermert ◽  
Stefan Lyer

AbstractVarious medical procedures make use of magnetic nanoparticles, such as Magnetic Drug Targeting (MDT), which boosts the demand for imaging modalities that are capable of in vivo visualizing this kind of particles. Magnetomotive Ultrasound is an imaging technique that can detect tissue, which is perfused by magnetic nanoparticles. In this contribution, we investigate the suitability of Magnetomotive Ultrasound to serve as a monitoring system during MDT. With the conducted measurements, it was possible for the first time to observe in vivo the accumulation of iron-oxide nanoparticles during a Magnetic Drug Targeting cancer treatment applied to a small animal (rabbit).


2019 ◽  
Vol 5 (1) ◽  
pp. 417-419 ◽  
Author(s):  
Michael Fink ◽  
Stefan Lyer ◽  
Christoph Alexiou ◽  
Stefan J. Rupitsch ◽  
Helmut Ermert

AbstractMagnetomotive Ultrasound is an imaging technique that is capable to detect tissue, which is perfused by magnetic nanoparticles. However, this modality is restricted to qualitative imaging only. Therefore, we present an extended Magnetomotive Ultrasound algorithm, which allows the quantitative determination of the spatial distribution of magnetic nanoparticle density in tissue. The algorithm is based on an iterative adjustment of simulated data to measurements. Experiments with tissue-mimicking phantoms reveal that the presented method leads to the spatial particle concentration in the correct order of magnitude.


2006 ◽  
Vol 6 (9) ◽  
pp. 3222-3225 ◽  
Author(s):  
F. Wiekhorst ◽  
C. Seliger ◽  
R. Jurgons ◽  
U. Steinhoff ◽  
D. Eberbeck ◽  
...  

Magnetic nanoparticles can be used in medicine in vivo as contrast agents and as a drug carrier system for chemotherapeutics. Thus local cancer therapy is performed with Magnetic Drug Targeting (MDT) and allows a specific delivery of therapeutic agents to desired targets, i.e., tumors, by using a chemotherapeutic substance bound to magnetic nanoparticles and focused with an external magnetic field to the tumor after intraarterial application. Important for this therapeutic principle is the distribution of the particles in the whole organism and especially in the tumor. Therefore we used magnetorelaxometry to quantify ferrofluids delivered after MDT. Tissue samples of some mm3 volume of a VX2 squamous cell carcinoma were measured by magnetic relaxation and the amount of iron was determined using the original ferrofluid suspension as a reference. From this the distribution of the magnetic particles within the slice of tumor was reconstructed. Histological cross-sections of the respective tumor offer the opportunity to map quantitatively the particle distribution and the vascularisation in the targeted tumor on a microscopic scale. Our data show that the integral method magnetorelaxometry and microscopic histological methods can complete each other efficiently.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1078
Author(s):  
Artem A. Sizikov ◽  
Marianna V. Kharlamova ◽  
Maxim P. Nikitin ◽  
Petr I. Nikitin ◽  
Eugene L. Kolychev

Magnetic nanoparticles have been widely used in nanobiomedicine for diagnostics and the treatment of diseases, and as carriers for various drugs. The unique magnetic properties of “magnetic” drugs allow their delivery in a targeted tumor or tissue upon application of a magnetic field. The approach of combining magnetic drug targeting and gene delivery is called magnetofection, and it is very promising. This method is simple and efficient for the delivery of genetic material to cells using magnetic nanoparticles controlled by an external magnetic field. However, magnetofection in vivo has been studied insufficiently both for local and systemic routes of magnetic vector injection, and the relevant data available in the literature are often merely descriptive and contradictory. In this review, we collected and systematized the data on the efficiency of the local injections of magnetic nanoparticles that carry genetic information upon application of external magnetic fields. We also investigated the efficiency of magnetofection in vivo, depending on the structure and coverage of magnetic vectors. The perspectives of the development of the method were also considered.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 278-281 ◽  
Author(s):  
Melánia Babincová ◽  
Veronika Altanerová ◽  
Miloš Lampert ◽  
Čestmír Altaner ◽  
Eva Machová ◽  
...  

Abstract Human serum albumin labeled with technetium-99m was encapsulated together with magnetite particles into phosphatidylcholine/cholesterol liposomes. In order to investigate the stability of this complex and its ability to be used for magnetic drug targeting, the in-vivo distribution after intravenous administration in rats was estimated. For in-vivo targeting an SmCo permanent magnet with intensity ~ 0.3 5 T was attached near the right kidney. Difference between the relative radioactivity in the magnetically targeted right kidney (25.92±5.84%) and non-targeted left kidney (0.93±0.05%) is sufficiently high for relevant clinical applications.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1083 ◽  
Author(s):  
Ioannis D. Boutopoulos ◽  
Dimitrios S. Lampropoulos ◽  
George C. Bourantas ◽  
Karol Miller ◽  
Vassilios C. Loukopoulos

Magnetic drug targeting (MDT) is a noninvasive method for the medical treatment of various diseases of the cardiovascular system. Biocompatible magnetic nanoparticles loaded with medicinal drugs are carried to a tissue target in the human body (in vivo) under the applied magnetic field. The present study examines the MDT technique in various microchannels geometries by adopting the principles of biofluid dynamics (BFD). The blood flow is considered as laminar, pulsatile and the blood as an incompressible and non-Newtonian fluid. A two-phase model is adopted to resolve the blood flow and the motion of magnetic nanoparticles (MNPs). The numerical results are obtained by utilizing a meshless point collocation method (MPCM) alongside with the moving least squares (MLS) approximation. The numerical results are verified by comparing with published numerical results. We investigate the effect of crucial parameters of MDT, including (1) the volume fraction of nanoparticles, (2) the location of the magnetic field, (3) the strength of the magnetic field and its gradient, (4) the way that MNPs approach the targeted area, and (5) the bifurcation angle of the vessel.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1650
Author(s):  
Marco Bassetto ◽  
Daniel Ajoy ◽  
Florent Poulhes ◽  
Cathy Obringer ◽  
Aurelie Walter ◽  
...  

Barded-Biedl syndrome (BBS) is a rare genetic disorder with an unmet medical need for retinal degeneration. Small-molecule drugs were previously identified to slow down the apoptosis of photoreceptors in BBS mouse models. Clinical translation was not practical due to the necessity of repetitive invasive intravitreal injections for pediatric populations. Non-invasive methods of retinal drug targeting are a prerequisite for acceptable adaptation to the targeted pediatric patient population. Here, we present the development and functional testing of a non-invasive, topical, magnetically assisted delivery system, harnessing the ability of magnetic nanoparticles (MNPs) to cargo two drugs (guanabenz and valproic acid) with anti-unfolded protein response (UPR) properties towards the retina. Using magnetic resonance imaging (MRI), we showed the MNPs’ presence in the retina of Bbs wild-type mice, and their photoreceptor localization was validated using transmission electron microscopy (TEM). Subsequent electroretinogram recordings (ERGs) demonstrated that we achieved beneficial biological effects with the magnetically assisted treatment translating the maintained light detection in Bbs−/− mice (KO). To our knowledge, this is the first demonstration of efficient magnetic drug targeting in the photoreceptors in vivo after topical administration. This non-invasive, needle-free technology expands the application of SMDs for the treatment of a vast spectrum of retinal degenerations and other ocular diseases.


Nano Letters ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 5652-5660 ◽  
Author(s):  
Khuloud T. Al-Jamal ◽  
Jie Bai ◽  
Julie Tzu-Wen Wang ◽  
Andrea Protti ◽  
Paul Southern ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document