The Role of the Outer Membrane of Gram-negative Bacteria in Antibiotic Resistance: Ajax’ Shield or Achilles’ Heel?

Author(s):  
Malcolm G. P. Page
2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Elizabeth M. Hart ◽  
Thomas J. Silhavy

ABSTRACT The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K), the A-to-P change at position 496 (bamAA496P), and the A-to-S change at position 499 (bamAA499S), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates. IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.


2013 ◽  
Vol 13 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Elizabeth MH Wellington ◽  
Alistair BA Boxall ◽  
Paul Cross ◽  
Edward J Feil ◽  
William H Gaze ◽  
...  

2021 ◽  
Author(s):  
nandan haloi ◽  
Archit Kumar Vasan ◽  
Emily Jane Geddes ◽  
Arjun Prasanna ◽  
Po-Chao Wen ◽  
...  

Antibiotic resistance of Gram-negative bacteria is largely attributed to the low permeability of their outer membrane (OM). Recently, we disclosed the eNTRy rules, a key lesson of which is that...


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 150 ◽  
Author(s):  
Dickson Aruhomukama ◽  
Ivan Sserwadda ◽  
Gerald Mboowa

Bacterial infections involving antibiotic resistant gram-negative bacteria continue to increase and represent a major global public health concern. Resistance to antibiotics in these bacteria is mediated by chromosomal and/or acquired resistance mechanisms, these give rise to multi-drug resistant (MDR) or extensive drug resistant (XDR) bacterial strains. Most recently, a novel acquired plasmid mediated resistance mechanism to colistin, an antibiotic that had been set apart as the last resort antibiotic in the treatment of infections involving MDR and XDR gram-negative bacteria, has been reported. Plasmid mediated colistin resistant gram-negative bacteria have been described to be pan-drug resistant, implying a state devoid of alternative antibiotic therapeutic options. This review describes the evolution of antibiotic resistance to plasmid mediated colistin resistance, and discusses the potential role of high-throughput sequencing technologies, genomics and bioinformatics towards improving antibiotic resistance surveillance, the search for novel drug targets and precision antibiotic therapy focused at combating colistin resistance, and antimicrobial resistance as a whole.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Uma Gabale ◽  
Perla Arianna Peña Palomino ◽  
HyunAh Kim ◽  
Wenya Chen ◽  
Susanne Ressl

Abstract Recent recurrent outbreaks of Gram-negative bacteria show the critical need to target essential bacterial mechanisms to fight the increase of antibiotic resistance. Pathogenic Gram-negative bacteria have developed several strategies to protect themselves against the host immune response and antibiotics. One such strategy is to remodel the outer membrane where several genes are involved. yejM was discovered as an essential gene in E. coli and S. typhimurium that plays a critical role in their virulence by changing the outer membrane permeability. How the inner membrane protein YejM with its periplasmic domain changes membrane properties remains unknown. Despite overwhelming structural similarity between the periplasmic domains of two YejM homologues with hydrolases like arylsulfatases, no enzymatic activity has been previously reported for YejM. Our studies reveal an intact active site with bound metal ions in the structure of YejM periplasmic domain. Furthermore, we show that YejM has a phosphatase activity that is dependent on the presence of magnesium ions and is linked to its function of regulating outer membrane properties. Understanding the molecular mechanism by which YejM is involved in outer membrane remodeling will help to identify a new drug target in the fight against the increased antibiotic resistance.


2010 ◽  
Vol 54 (9) ◽  
pp. 3708-3713 ◽  
Author(s):  
Raquel F. Epand ◽  
Jake E. Pollard ◽  
Jonathan O. Wright ◽  
Paul B. Savage ◽  
Richard M. Epand

ABSTRACT Ceragenins are cholic acid-derived antimicrobial agents that mimic the activity of endogenous antimicrobial peptides. Ceragenins target bacterial membranes, yet the consequences of these interactions have not been fully elucidated. The role of the outer membrane in allowing access of the ceragenins to the cytoplasmic membrane of Gram-negative bacteria was studied using the ML-35p mutant strain of Escherichia coli that has been engineered to allow independent monitoring of small-molecule flux across the inner and outer membranes. The ceragenins CSA-8, CSA-13, and CSA-54 permeabilize the outer membrane of this bacterium, suggesting that the outer membrane does not play a major role in preventing the access of these agents to the cytoplasmic membrane. However, only the most potent of these ceragenins, CSA-13, was able to permeabilize the inner membrane. Interestingly, neither CSA-8 nor CSA-54 caused inner membrane permeabilization over a 30-min period, even at concentrations well above those required for bacterial toxicity. To further assess the role of membrane interactions, we measured membrane depolarization in Gram-positive bacteria with different membrane lipid compositions, as well as in Gram-negative bacteria. We found greatly increased membrane depolarization at the minimal bactericidal concentration of the ceragenins for bacterial species containing a high concentration of phosphatidylethanolamine or uncharged lipids in their cytoplasmic membranes. Although membrane lipid composition affected bactericidal efficiency, membrane depolarization was sufficient to cause lethality, providing that agents could access the cytoplasmic membrane. Consequently, we propose that in targeting bacterial cytoplasmic membranes, focus be placed on membrane depolarization as an indicator of potency.


Sign in / Sign up

Export Citation Format

Share Document