Concrete Strength Reduction of DSCT Member by Welding Heat

Author(s):  
Deokhee Won ◽  
Taek Hee Han ◽  
Seungjun Kim ◽  
Young Jong Kang
2017 ◽  
Vol 728 ◽  
pp. 367-372 ◽  
Author(s):  
Mateusz Popek ◽  
Łukasz Sadowski

The effect of mineral admixtures on compressive and tensile strength of concrete was studied in the article. The concrete mixtures were modified by quart, quartz-feldspar and basalt powder in amount 10, 20 and 30 % by weight of cement. The mix with no mineral admixture was prepared as a control sample. The results obtained show that selected mineral admixtures lower concrete strength but the degree of strength reduction depends on the used mineral admixture and its concentration.


2017 ◽  
Vol 62 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Éva Lublóy

Numerous studies have verified that increased concrete strength reduces its resistance to fire, leads to a higher degree of strength reduction and higher chances of spalling of concrete surfaces.The risks of spalling of concrete surfaces can be reduced by adding synthetic polypropylene fibres. Numerous experiments have shown that the risk of spalling of the concrete surface is significantly lower when using short, small diameter fibres of polypropylene synthetic, because the pore structure created by the burning of fibres reduces the risk of cracking.However, the question arises whether other types of fibres of greater diameter and length are still able to prevent spalling of concrete surfaces without drastically reducing the strength and if so, in what range of concrete strength it is true.The experiments are aimed to determine the effects of micro and macro synthetic fibres on the post-fire residual compressive strength, flexural strength and porosity of concrete.Nine kinds of mixture were prepared and tested. Three of them are without fibers (reference concretes) with diverse strength, three with synthetic micro-fibres with diverse strength and three with synthetic macro-fibres of diverse strength. The experiment was conducted with three concretes with different strength. Each type had a reference concrete without fibre reinforcement, one with micro- and one with macro-fibres.


2019 ◽  
Vol 197 ◽  
pp. 725-733 ◽  
Author(s):  
Ryan Howes ◽  
Muhammad N.S. Hadi ◽  
Warren South

2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Sudarmadi Sudarmadi

In this paper a case study about concrete strength assessment of bridge structure experiencing fire is discussed. Assessment methods include activities of visual inspection, concrete testing by Hammer Test, Ultrasonic Pulse Velocity Test, and Core Test. Then, test results are compared with the requirement of RSNI T-12-2004. Test results show that surface concrete at the location of fire deteriorates so that its quality is decreased into the category of Very Poor with ultrasonic pulse velocity ranges between 1,14 – 1,74 km/s. From test results also it can be known that concrete compressive strength of inner part of bridge pier ranges about 267 – 274 kg/cm2 and concrete compressive strength of beam and plate experiencing fire directly is about 173 kg/cm2 and 159 kg/cm2. It can be concluded that surface concrete strength at the location of fire does not meet the requirement of RSNI T-12-2004. So, repair on surface concrete of pier, beam, and plate at the location of fire is required.


2018 ◽  
Vol 1 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Chunxiang Qian ◽  
Wence Kang ◽  
Hao Ling ◽  
Hua Dong ◽  
Chengyao Liang ◽  
...  

Support Vector Machine (SVM) model optimized by K-Fold cross-validation was built to predict and evaluate the degradation of concrete strength in a complicated marine environment. Meanwhile, several mathematical models, such as Artificial Neural Network (ANN) and Decision Tree (DT), were also built and compared with SVM to determine which one could make the most accurate predictions. The material factors and environmental factors that influence the results were considered. The materials factors mainly involved the original concrete strength, the amount of cement replaced by fly ash and slag. The environmental factors consisted of the concentration of Mg2+, SO42-, Cl-, temperature and exposing time. It was concluded from the prediction results that the optimized SVM model appeared to perform better than other models in predicting the concrete strength. Based on SVM model, a simulation method of variables limitation was used to determine the sensitivity of various factors and the influence degree of these factors on the degradation of concrete strength.


Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


Sign in / Sign up

Export Citation Format

Share Document