On the Optimum Placement and Number Selection of Relay Nodes in Multi-hop Routing for Minimizing Communication Power Consumption

Author(s):  
Pei Yang ◽  
Le Yang ◽  
Yanbo Xue ◽  
Li Peng
2013 ◽  
Vol 9 (3) ◽  
pp. 170 ◽  
Author(s):  
Nyoman Gunantara ◽  
Gamantyo Hendrantoro

This paper focuses in the selection of an optimal path pair for cooperative diversity based on cross-layer optimization in multihop wireless ad hoc networks. Cross-layer performance indicators, including power consumption, signal-to-noise ratio, and load variance are optimized using multi-objective optimization (MOO) with Pareto method. Consequently, optimization can be performed simultaneously to obtain a compromise among three resources over all possible path pairs. The Pareto method is further compared to the scalarization method in achieving fairness to each resource. We examine the statistics of power consumption, SNR, and load variance for both methods through simulations. In addition, the complexity of the optimization of both methods is evaluated based on the required computing time.


Author(s):  
J. P. Sadler ◽  
K. E. Rouch ◽  
A. S. Rani

Abstract Nonlinear programming techniques are combined with a finite element program for dynamic analysis of rotor-bearing systems. The resulting program provides the means for obtaining optimal designs for improved dynamic performance of a rotor through the automated selection of various design parameters of the rotor-bearing system. Both constrained and unconstrained optimizations are considered. Illustrative examples are presented for the case of optimum placement of critical speeds.


Author(s):  
Maryleen U. Ndubuaku ◽  
Kennedy Chinedu Okafor ◽  
Chidiebele Chinwendu Udeze ◽  
Omar Salih

The growing demand for bandwidth and spectrum has inspired the ongoing efforts to establish the future 5G network supporting vertical sectors such as cyber-physical systems (CPS). Cooperative communication is one of the requisite techniques to improve coverage, network capacity and reduce power consumption in the network. In this paper, a symbiotic two-phase intelligent transmission is considered. The first phase occurs between the source and the candidate relays, and involves the selection of a set of “reliable relays”. The second phase occurs between the reliable relays and the destination, and involves the selection of the “best relay” for transmission. Dynamic relay selection using k-means clustering is used to detect the most significant correlation between all the channel state information (CSI) attributes in the system. The work identified the reliable relays while reducing the number of relay nodes for the second transmission phase. Contextual scenarios are created with typical network configuration using three geographical locations Coventry, Birmingham and London. An experimental validation is done with Omnet++ environment for the scenarios of three geographical locations. A natural grouping of mobile users is carried out leveraging the relay capabilities. The results are validated using support vector machine (SVM) classification algorithm. Considering urban environment deployment of relay nodes, metrics such as signal-to-noise-plus-interference ratio (SINR), attenuation, signal to noise ratio (SNR), link quality, k-means clustering, accuracy, and root mean square error (RMSE) are investigated for the Direct-2-Direct (D2D) capable relays. It was observed that the proposed technique both outperforms the other fixed-parameter relay selection techniques and improves with larger datasets unlike the other techniques.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Nyoman Gunantara ◽  
I Dewa Nyoman Nurweda Putra

This research analyzes the metaheuristic methods, that is, ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO), in the selection of path pairs on multicriteria ad hoc network. Multicriteria used are signal-to-noise ratio (SNR), load variance, and power consumption. Analysis of the simulation result is done as follows: first, in terms of computing time, the ACO method takes the most time compared with GA and PSO methods. Second, in terms of multicriteria performance, i.e., the performance of SNR, load variance, and power consumption, the GA method shows the same value in each repetition. It is different from ACO and PSO that show varying values. Finally, the selection of the path pairs by the GA method indicates the pairs of the path that are always the same as by the ACO and PSO methods indicate those that vary.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Fayçal Ait Aoudia ◽  
Matthieu Gautier ◽  
Olivier Berder

Opportunistic forwarding has emerged as a promising technique to address the problem of unreliable links typical in wireless sensor networks and improve energy efficiency by exploiting multiuser diversity. Timer-based solutions, such as timer-based contention, form promising schemes to allow opportunistic next hop relay selection. However, they can incur significant idle listening and thus reduce the lifetime of the network. To tackle this problem, we propose to exploit emerging wake-up receiver technologies that have the potential to considerably reduce the power consumption of wireless communications. A careful design of MAC protocols is required to efficiently employ these new devices. In this work, we propose Opportunistic Wake-Up MAC (OPWUM), a novel multihop MAC protocol using timer-based contention. It enables the opportunistic selection of the best receiver among its neighboring nodes according to a given metric (e.g., the remaining energy), without requiring any knowledge about them. Moreover, OPWUM exploits emerging wake-up receivers to drastically reduce nodes power consumption. Through analytical study and exhaustive networks simulations, we show the effectiveness of OPWUM compared to the current state-of-the-art protocols using timer-based contention.


Sign in / Sign up

Export Citation Format

Share Document