A Cooperative Routing Algorithm for Maximizing Network Lifetime

Author(s):  
Ji Zhang ◽  
Dafang Zhang ◽  
Kun Xie ◽  
Shiming He ◽  
Hong Qiao ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shuli Song

Wireless cooperative routing algorithm transmits the data collected in the target area to users, so that users can obtain monitoring information timely and accurately. In the traditional low-power adaptive clustering hierarchical routing protocol, the process of building clusters is random, the resources of nodes are not fully utilized, the node death speed is fast, the network life cycle is short, and the performance is not stable enough. In addition, the route maintenance process is cumbersome and will occupy a lot of bandwidth. In order to solve the problems of real-time transmission of digital media art communication data and network lifetime optimization, a wireless cooperative routing algorithm based on minimum energy consumption is proposed. The facts of transmission strength consumption, node residual strength, and minimal information transmission extension are analyzed, a new weight feature is proposed, and a multipath statistics routing scheme is developed by using the usage of the minimal strength consumption. All digital media art propagation sensor nodes transmit data to sink nodes along multiple transmission paths. Simulation results show that the algorithm can prolong the network lifetime, reduce and balance the node energy consumption, reduce the data transmission delay, reduce the energy consumption of wireless cooperative routing based on the minimum energy consumption by 64.5%, and increase the number of compressed images by 182%.


2017 ◽  
Vol 14 (4) ◽  
pp. 20-34 ◽  
Author(s):  
Ji Zhang ◽  
Dafang Zhang ◽  
Kun Xie ◽  
Hong Qiao ◽  
Shiming He

Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


2011 ◽  
Vol 135-136 ◽  
pp. 781-787
Author(s):  
Yong Feng Ju ◽  
Hui Chen

This paper proposed a new Ad Hoc dynamic routing algorithm, which based on ant-colony algorithm in order to reasonably extend the dynamic allocation of network traffic and network lifetime. The Algorithm choose path according transmission latency, path of the energy rate, congestion rate, dynamic rate. The Algorithm update the routing table by dynamic collection of path information after path established. The analyse shows that algorithm increases the network throughput, reduces the average end-to-end packet transmission latency, and extends the network lifetime, achieves an improving performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Sohail Jabbar ◽  
Rabia Iram ◽  
Muhammad Imran ◽  
Awais Ahmad ◽  
Anand Paul ◽  
...  

Network lifetime is one of the most prominent barriers in deploying wireless sensor networks for large-scale applications because these networks employ sensors with nonrenewable scarce energy resources. Sensor nodes dissipate most of their energy in complex routing mechanisms. To cope with limited energy problem, we present EASARA, an energy aware simple ant routing algorithm based on ant colony optimization. Unlike most algorithms, EASARA strives to avoid low energy routes and optimizes the routing process through selection of least hop count path with more energy. It consists of three phases, that is, route discovery, forwarding node, and route selection. We have improved the route discovery procedure and mainly concentrate on energy efficient forwarding node and route selection, so that the network lifetime can be prolonged. The four possible cases of forwarding node and route selection are presented. The performance of EASARA is validated through simulation. Simulation results demonstrate the performance supremacy of EASARA over contemporary scheme in terms of various metrics.


Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


2019 ◽  
Vol 8 (2) ◽  
pp. 4054-4059

In present scenario, Mobile Ad-hoc Networks (MANETs) is the emerging research topic in the applications like disaster situations (battle fields, earthquake, etc). The utility of MANET is increased by combining with the internet. The conventional techniques in MANET have a few issues like less infrastructure, standalone networks, and dynamic or complex topology. In order to address these issues, an efficient clustering and channeling algorithm (Hybrid K-means, Particle Swarm Optimization (PSO) based Ad-hoc On-demand Distance Vector (AODV) channeling algorithm) is developed for maximizing the network lifetime. The proposed algorithm finds the optimal cluster head selection for discovering the shortest path among the cluster heads. The Hybrid-K-means-PSO-AODV technique is applied to increase the Network Lifetime (NL), alive nodes, total packet send, throughput, and also to minimizes the dead nodes and energy consumption in a network. In the experimental phase, the proposed approach reduced the emery consumption up to 170 joules related to the existing approaches: PSO-PSO- MANETs and PSO-GSO- MANETs.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1002 ◽  
Author(s):  
Jianming Cheng ◽  
Yating Gao ◽  
Ningbo Zhang ◽  
Hongwen Yang

Cooperative routing is one of the most widely used technologies for improving the energy efficiency and energy balance of wireless multi-hop networks. However, the end-to-end energy cost and network lifetime are greatly restricted if the cooperative transmission model is not designed properly. The main aim of this paper is to explore a two-stage cooperative routing scheme to further improve the energy efficiency and prolong the network lifetime. A two-stage cooperative (TSC) transmission model is firstly designed in which the core helper is introduced to determine the helper set for cooperation. Then, the two-stage link cost is formulated where x, the weight of residual energy, is introduced to be adjusted for different design goals. By selecting the optimal helper set, the two-stage link cost of each link can be optimized. Finally, based on the designed TSC transmission model and the optimized two-stage link cost, a distributed two-stage cooperative routing (TSCR) scheme is further proposed to minimize the end-to-end cooperative routing cost. Simulation results evaluate the effect of x on the different performance metrics. When x equals 0, TSCR can achieve the shortest end-to-end transmission delay and highest energy efficiency, while a larger x can achieve a longer network lifetime. Furthermore, simulation results also show that the proposed TSCR scheme can effectively improve both the energy efficiency and network lifetime compared with the existing schemes.


Sign in / Sign up

Export Citation Format

Share Document