The Use of T Cell Hybridomas in the Biochemical and Biological Characterization of Multiple Regulatory Factors Produced by T Cells

Author(s):  
J. W. Schrader ◽  
I. Clark-Lewis
1991 ◽  
Vol 174 (4) ◽  
pp. 891-900 ◽  
Author(s):  
S M Friedman ◽  
M K Crow ◽  
J R Tumang ◽  
M Tumang ◽  
Y Q Xu ◽  
...  

While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM-reactive human T cells, V beta 17. In addition, a V beta 17- MAM-reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease.


1992 ◽  
Vol 22 (2) ◽  
pp. 491-498 ◽  
Author(s):  
Angel Ezquerra ◽  
David B. Wilde ◽  
Thomas J. McConnell ◽  
Knut Sturmhöfel ◽  
Robert B. Valas ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14565-e14565
Author(s):  
Amit Adhikari ◽  
Juliete Macauley ◽  
Yoshimi Johnson ◽  
Mike Connolly ◽  
Tim Coleman ◽  
...  

e14565 Background: Glioblastoma (GBM) is an aggressive form of brain cancer with a median survival of 15 months which has remained unchanged despite technological advances in the standard of care. GBM cells specifically express human cytomegalovirus (HCMV) proteins providing a unique opportunity for targeted therapy. Methods: We utilized our UNITE (UNiversal Intracellular Targeted Expression) platform to develop a multi-antigen DNA vaccine (ITI-1001) that codes for the HCMV proteins- pp65, gB and IE-1. The UNITE platform involves lysosomal targeting technology, fusing lysosome-associated protein 1 (LAMP1) with target antigens resulting in increased antigen presentation by MHC-I and II. ELISpot, flow cytometry and ELISA techniques were used to evaluate the vaccine immunogenicity and a syngeneic, orthotopic GBM mouse model that expresses HCMV proteins was used for efficacy studies. The tumor microenvironment studies were done using flow cytometry and MSD assay. Results: ITI-1001 vaccination showed a robust antigen-specific CD4 and CD8 T cell response in addition to a strong humoral response. Using GBM mouse model, therapeutic treatment of ITI-1001 vaccine resulted in ̃56% survival with subsequent long-term immunity. Investigating the tumor microenvironment showed significant CD4 T cell infiltration as well as enhanced Th1 and CD8 T cell activation. Regulatory T cells were also upregulated upon ITI-1001 vaccination and would be an attractive target to further improve this therapy. In addition, tumor burden negatively correlated with number of activated CD4 T cells (CD4 IFNγ+) reiterating the importance of CD4 activation in ITI-1001 efficacy and potentially identifying treatment responders and non-responders. Further characterization of these two groups showed high infiltration of CD3+, CD4+ and CD8+ T cells in responders compared with non- responders along with higher CD8 T cell activation. Conclusions: Thus, we show that vaccination with HCMV antigens using the ITI-1001-UNITE platform generates strong cellular and humoral immune responses, triggering significant anti-tumor activity that leads to enhanced survival in mice with GBM.


Blood ◽  
2021 ◽  
Author(s):  
Daniel A Lichtenstein ◽  
Fiorella Schischlik ◽  
Lipei Shao ◽  
Seth M Steinberg ◽  
Bonnie Yates ◽  
...  

CAR T-cell toxicities resembling hemophagocytic lymphohistiocytosis (HLH) occur in a subset of patients with cytokine release syndrome (CRS). As a variant of conventional CRS, a comprehensive characterization of CAR T-cell associated HLH (carHLH) and investigations into associated risk factors are lacking. In the context of 59 patients infused with CD22 CAR T-cells where a substantial proportion developed carHLH, we comprehensively describe the manifestations and timing of carHLH as a CRS variant and explore factors associated with this clinical profile. Amongst 52 subjects with CRS, 21 (40.4%) developed carHLH. Clinical features of carHLH included hyperferritinemia, hypertriglyceridemia, hypofibrinogenemia, coagulopathy, hepatic transaminitis, hyperbilirubinemia, severe neutropenia, elevated lactate dehydrogenase and occasionally hemophagocytosis. Development of carHLH was associated with pre-infusion NK-cell lymphopenia and higher bone marrow T/NK-cell ratio, which was further amplified with CAR T-cell expansion. Following CRS, more robust CAR T-cell and CD8 T-cell expansion in concert with pronounced NK-cell lymphopenia amplified pre-infusion differences in those with carHLH without evidence for defects in NK-cell mediated cytotoxicity. CarHLH was further characterized by persistent elevation of HLH-associated inflammatory cytokines, which contrasted with declining levels in those without carHLH. In the setting of CAR T-cell mediated expansion, clinical manifestations and immunophenotypic profiling in those with carHLH overlap with features of secondary HLH, prompting consideration of an alternative framework for identification and management of this toxicity profile to optimize outcomes following CAR T-cell infusion.


2019 ◽  
Vol 70 (1) ◽  
pp. e456
Author(s):  
Sophia Schreiber ◽  
Melanie Honz ◽  
Matthias Schiemann ◽  
Christina Zielinski ◽  
Ulrike Protzer ◽  
...  

1994 ◽  
Vol 153 (1) ◽  
pp. 9-27 ◽  
Author(s):  
Wendy C. Brown ◽  
William C. Davis ◽  
Sang H. Choi ◽  
Dirk A.E. Dobbelaere ◽  
Gary A. Splitter

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2091-2091
Author(s):  
Maria T. Ahlen ◽  
Mette K. Killie ◽  
Bjorn Skogen ◽  
Anne Husebekk ◽  
Tor B. Stuge

Abstract Neonatal alloimmune thrombocytopenia (NAIT) can cause severe complications such as intrauterine death or intracranial hemorrhage (ICH) in the newborn, and is caused by the transfer of platelet-depleting antibodies from the mother to the fetus during pregnancy. These antibodies react with allogeneic epitopes, most commonly human platelet antigen (HPA) 1a, when present on fetal platelets. Although these responses are thought to be a result of a T cell-dependent immune response, HPA 1a specific T cells have not yet been isolated. To examine whether HPA 1a specific T cells could be detected and isolated, we collected PBMC post delivery from an HPA 1a negative mother who gave birth to an HPA 1a positive neonate suffering from severe thrombocytopenia (platelet count <50×109/L). The cells were stimulated with HPA 1a peptides (20aa) in long term cultures supplemented with IL-7 and IL-2, and subsequently, IL-15. After 4 weeks in culture these cells were labeled with CFSE dye and restimulated with HPA 1a or control peptides. After additional 2 weeks in culture supplemented with IL-2 and IL-15, specific proliferative responses were detectable by CFSE dye dilution by flow cytometry. The cells were cloned by fluorescent-activated cell sorting (FACS) and expanded in numbers with anti-CD3 stimulation in the presence of irradiated allogeneic PBMC and IL-2. The resulting clonal T cell lines were characterized in proliferation assays, ELISPOT assays and phenotyped by flow cytometry. All clones were CD3+, CD4+ and CD19−, and the majority of the clones proliferated and secreted cytokines in response to stimulation with HPA 1a peptides, but not control peptides. In ELISPOT assays, peptide-pulsed antigen-presenting cells were required for T cell detection. These clonal HPA 1a specific CD4+ T cell lines represent formal evidence of the existence of HPA 1a specific T cell responses related to NAIT and will serve as important tools for further characterization of maternal immune responses associated with NAIT.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2450-2450
Author(s):  
Cathrin Klingeberg ◽  
Anna Lena Illert ◽  
Nicolas Schneider ◽  
Christian Peschel ◽  
Cornelius Miething ◽  
...  

Abstract Anaplastic large cell lymphomas (ALCL) are a subgroup of aggressive Non-Hodgkin-Lymphomas mainly affecting children and young adults. In 60 % of systemic ALCLs, a translocation t(2;5) (p23;q35) resulting in NPM-ALK fusion gene expression is found. The constitutively activation of ALK tyrosine kinase expressed from the NPM-promoter causes increased proliferation and inhibition of apoptosis thereby promoting cell survival and tumorigenesis. Immunphenotypic characterization of human ALCLs revealed highly CD30-positive cells of T- or Null-Cell-origin and resulted in promising clinical trials with CD30-coupled antibodies. However, the impact of CD30 on diseases development as well as NPM-ALK signal transduction in course of disease remains unclear and appropriate mouse models to answer these questions are missing. In this regard, we established a retroviral murine bone marrow (BM) transplantation model resembling a human ALCL-like T-cell neoplasia. Therefore we use an inducible Cre/loxP system where NPM-ALK expression is controlled and expressed in a special type of early T-cells. For generation of this vector, we inserted a floxed translational ‘stop-cassette’ between the retroviral promoter MSCV-LTR and the NPM-ALK cDNA, which guaranties specific expression of NPM-ALK only in cells, where the enzyme Cre-recombinase is expressed. Recognition of the loxP-sites by Cre-recombinase leads in our system to deletion of the stop-cassette and consequently NPM-ALK expression. Using different Cre-expressing cell types allowed us to study pathogenesis of ALCL in more detail. In our recent study, we infected bone marrow of transgenic mice expressing Cre-recombinase under the control of the Lck-promotor with our MSCV-Stop-NPM-ALK-IRES-EGFP (MSNAIE) vector and transplanted it into lethally irradiated C57Bl6 recipient mice. With a latency of 4-5 months, these mice developed Thy1.2-positive lymphomas and died from neoplastic infiltration of bone marrow and lymphatic organs with T-cells. Immunphenotypic analyses confirmed T-Cell origin of the lymphomas and showed importantly highly CD30-expression. Staining of the different T-cell-subpopulations demonstrated highest NPM-ALK expression in immature CD4/CD8 double negative T-cells and not fully differentiated CD4/CD8 double positive T-cells. Interestingly, FACS-staining of the proliferation marker Ki-67 revealed highest expression in CD4/CD8 double negative T-cells, in contrast to the other subpopulations where Ki-67 is less detected. Therefore we hypothesized, that the lymphoma initiating cell (LIC) must be within this early T-cell population. Most interestingly we found highest CD30-expression just in the same CD4/CD8 negative T-cell population, pointing to a crucial role of CD30 in lymphoma initiation. To further substantiate our hypothesis we performed secondary and tertiary transplantations with different sorted T-Cell subpopulation and indeed, the immature CD4/CD8 double negative population was able to initiate lymphoma growth in recipient mice. Further transplantations by limited dilution will help to identify the leukemia initiating cell in this model. Taken together, our murine LckCre-NPM-ALK bone marrow transplantation model represents a precise and versatile tool to study disease initiation and development resembling human ALCL. Moreover, the impact of specific proteins (e.g. CD30) in the course of disease can be addressed by combining Knockout (e.g. CD30)/LckCre transgenic mice with our model. To this end we crossed CD30/Lck-Cre mice, and preliminary analysis indicate that CD30 expression seems not to be required for the initial onset of disease. Further characterization of the role of CD30 in ALCL is ongoing. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document