In Vitro Effect of GM-CSF and IFN-γ on the Establishment of Stromal Layer and Hemopoiesis in Human Dexter Culture

Author(s):  
M. Waechter ◽  
E. Elstner ◽  
J. Maciejewski ◽  
H.-D. Volk ◽  
R. Ihle
Keyword(s):  
Gm Csf ◽  
Ifn Γ ◽  
2016 ◽  
Vol 9 (2) ◽  
pp. 299-304 ◽  
Author(s):  
C. Lautert ◽  
L. Ferreiro ◽  
M.I. Azevedo ◽  
S.A. Botton ◽  
J.T. Santos ◽  
...  

Cytokines are proteins secreted by cells of innate and acquired immunity, produced in response to various antigens and responsible for mediating several function of these cells. Our study evaluated the profile of cytokines interleukin 5 (IL-5) and interferon gamma (IFN-γ), induced in lymphocytes of broiler chickens in response to secondary fungal metabolites ochratoxin A (OTA) and deoxynivalenol (DON) at concentrations of 0.001, 0.01, 0.1 and 1 μg/ml. The quantification of the cytokines was analysed at 24, 48 and 72 h after incubation with mycotoxins, using real-time PCR (qRT-PCR). The results obtained showed that OTA induced mRNA synthesis of IL-5 at concentrations 0.001, 0.1 and 1 μg/ml after 24 h of lymphocyte incubation, while at 48 h only the expression of the IL-5 cytokine at a concentration of 1 μg/ml (P<0.05) was detected. DON in a concentration of 1 μg/ml induced the expression of IL-5 in the lymphocytes only at 48 h post-incubation period (P<0.05). Regarding IFN-γ, gene expression was not observed in the lymphocytes of broiler chickens incubated with OTA and DON. The data obtained represent a profile of response mediated by T helper 2 cells to the exposure of broiler chicken immune cells to different concentrations of OTA and DON.


Nephron ◽  
2021 ◽  
pp. 1-11
Author(s):  
Jiawei Ji ◽  
Yuan Zhuang ◽  
Zhemin Lin ◽  
Yihang Jiang ◽  
Wei Wang ◽  
...  

<b><i>Objective:</i></b> Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells which can suppress T-cell functionality. Herein, we evaluated the functional importance of MDSCs in the context of kidney ischemia-reperfusion injury (IRI) and explored their ability to regulate innate and adaptive immune cell function in this context. <b><i>Methods:</i></b> The differentiation of MDSCs was induced in vitro by treating cells with GM-CSF and interferon (IFN)-γ. In a murine model of renal IRI, serum creatinine and blood urea nitrogen values were measured to monitor kidney function, while histopathological and immunohistochemical approaches were used to assess kidney injury severity. In addition, flow cytometry was employed to assess the phenotypes and apoptosis of kidney cells in these mice. <b><i>Results:</i></b> MDSCs induced by treatment with GM-CSF + IFN-γ could suppress T-cell functionality in vitro<i>.</i> The adoptive transfer of these MDSCs into an IRI mouse model system enhanced kidney damage and impaired renal function following the recruitment of these cells to renal tissues in these mice. Following such adoptive transfer, the relative frequency of MDSCs with a CD11b<sup>+</sup>Ly6G<sup>−</sup>Ly6C<sup>high</sup> monocytic-MDSC phenotype decreased, whereas cells with a CD11b<sup>+</sup>Ly6G<sup>+</sup>Ly6C<sup>low</sup> polymorphonuclear-MDSC phenotype become more prevalent within kidney tissues following IRI. Adoptive transfer also coincided with increased frequencies of macrophages and dendritic cells (DCs) in the kidney tissues. This suggested that M-MDSCs contributed to early-stage renal IRI damage by differentiating into these deleterious cell types. However, MDSC-induced suppression of CD4<sup>+</sup> and CD8<sup>+</sup> T-cell infiltration was not sufficient to prevent the deterioration of renal function in these mice. <b><i>Conclusions:</i></b> Herein, we successfully developed a protocol wherein MDSCs were differentiated in vitro through combination GM-CSF/IFN-γ treatment. When these MDSCs were subsequently adoptively transferred into a murine model of renal IRI, they aggravated kidney damage, likely owing to the differentiation of M-MDSCs into deleterious macrophages and DCs.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1654-1654
Author(s):  
Young-June Kim ◽  
Hal E. Broxmeyer

Abstract Abstract 1654 Poster Board I-680 CD8+ cytotoxic T cells are often ‘exhausted’ by programmed death-1 (PD-1) signaling, and subsequently the functions of these cells are terminated especially in a tumor environment or upon chronic HIV or HCV infection. Subsets of myeloid cells referred to as myeloid derived suppressor cells (MDSC) or regulatory dendritic cells (DCs) have been implicated in inducing exhaustion or termination of effector CD8+ T cells. To this end, we developed various myeloid-derived dendritic cell (DC) types in vitro from human CD14+ monocytes using M-CSF or GM-CSF in the presence of IL-4 with/without other cytokines, and characterized these DCs with respect to their capacity to induce PD-1 expression on and exhaustion of CD8+ T cells. We then assessed their impact on longevity of CD8+ T cells following coculture. Myeloid DCs developed in vitro with M-CSF and IL-4 for 5 days (referred to as M-DC) did not express ligand for PD-1 (PD-L1) nor did they induce PD-1 on CD8+ T cells. Thus, using M-DCs as starting cells, we sought determinant factors that could modulate M-DCs to express PD-L1 and thereby induce exhaustion of CD8+ T cells. In order to better monitor exhaustion processes, we incubated human peripheral CD8+ T cells for 5 days in the presence of IL-15, an important cytokine for maintaining viability, before coculture. M-DCs showed little impact on exhaustion or longevity of the CD8+ T cells. IL-10 converted M-DC into a distinct myeloid DC subset (referred to as M-DC/IL-10) with an ability to express PD-L1 as well as to induce PD-1 on cocultured CD8+ T cells. M-DC/IL-10 cells markedly suppressed proliferation of cocultured CD8+ T cells. M-DC/IL-10 cells were morphologically unique with many granules and filamentous structures around the cell periphery. These IL-10 effects on M-DC were completely abrogated in the presence of TNF-á. M-DC/IL-10 cells could be further differentiated into another myeloid DC subset in the presence of IFN-γ (referred to as M-DC/IL-10/IFN-γ) with an ability to express even higher levels of PD-L1 compared to M-DC/IL-10 cells. The most remarkable effect of M-DC/IL-10/IFN-γ cells on cocultured CD8+ T cells was a dramatic loss of CD8+ T cells. Light and confocal microscopic observations indicated that loss of CD8+ T cells was due to phagocytosis by M-DC/IL-10/IFN-γ cells. As IFN-γ, a type 1 cytokine which is induced in CD8+ T cells by IL-12 is essential for phagocytosis, we tested whether IL-12 treatment of CD8+ T cells could further enhance phagocytosis induced by M-DC/IL-10/IFN-γ cells. Indeed, IL-12 treatment greatly increased numbers of phagocytosed CD8+ T cells. In contrast, IL-4 treated CD8+ T cells became resistant to phagocytosis, suggesting IFN-γ producing (type1) CD8+ T cells may be primary target cells for the M-DC/IL-10 cells mediated phagocytosis. CD4+ T cells were not as susceptible as CD8+ T cells to phagocytosis. We failed to detect such phagocytic activity induced by prototype DCs generated with GM-CSF and IL-4. Phagocytic activity was not inhibited by various arginase-1 inhibitors suggesting that nitric oxide signaling may not mediate phagocytic activity. Neutralizing antibody to PD-L1 slightly but significantly lowered phagocytic activity suggesting that PD-L1/PD-1 interaction may be partially involved in this process. Myeloid DCs are thought to be immunogenic, actively inducing T cell immune responses. Our results demonstrate that myeloid DCs may play suppressive roles as well through induction of phagocytic activity, especially against IFN-γ producing CD8+ T cells. This may serve as a regulatory mechanism for type 1 CD8+ T cell immune responses in an IL-10 enriched microenvironment. Disclosures No relevant conflicts of interest to declare.


2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Marcella Vassão de Almeida Baptista ◽  
Laís Teodoro da Silva ◽  
Sadia Samer ◽  
Telma Miyuki Oshiro ◽  
Iart Luca Shytaj ◽  
...  

Abstract Background We developed a personalized Monocyte-Derived Dendritic-cell Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses. Methods PBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. Results The protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to day 15 and from baseline to day 30 and day 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. Conclusions MDDC had a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment. Trial registration NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016)


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 10-10
Author(s):  
Régine Audran ◽  
Haithem Chtioui ◽  
Anne-Christine Thierry ◽  
Carole Mayor ◽  
Laure Vallotton ◽  
...  

10 Background: Trastuzumab is a humanized monoclonal antibody targeting breast cancer cells overexpressing the HER2-oncoprotein. During a Phase-I single centre, single dose, randomized, double-blind, cross-over study assessing the bioequivalence of a proposed trastuzumab biosimilar (MYL-1401O) versus the initially marketed drug (Herceptin), we investigated in addition a large panel of pharmacodynamics parameters comparing the immunomodulatory activity of both drugs. Methods: 22 healthy males were included, 19 subjects receiving randomly a single intravenous infusion of MYL-1401O and 22 of Herceptin, separated by 16 to 22 week wash-out. Blood samples drawn pre- and post- infusion were assessed for in vivo serum cytokines induction (IL-1β, IL-2, IL-6, IL-10, IL-12, TNF-α, GM-CSF and IFN-γ) whereas the impact of treatment on mononuclear cell subsets and their level of activation was tested ex vivo. Volunteers’ PBMC (peripheral blood monocnuclear cells) were stimulated in vitro with recall antigens and mitogen for cytokine production. At baseline, we performed in addition a cytokine release assay on PBMC upon stimulation with trastuzumab as a preclinical safety test. Results: Trastuzumab infusion induced a transient and weak peak of serum IL-6 at 6h, and a modulation of mononuclear cell subset profile and level of activation. Notably CD16+ cells frequency decreased at 3h and peaked at 48h. Except for CD8+ T cells, there were no significant differences between Herceptin and its proposed biosimilar ex vivo. PBMC stimulated in vitro with trastuzumab secreted IL-6, TNF-a, IL-1β, GM-CSF, IFN-γ, and IL-10, but no IL-2. There was no significant difference between the two mAbs. Conclusions: Based on these in vivo, ex vivo and in vitro experiments, there is a strong assumption that MYL-1401O is biosimilar to the reference drug Herceptin for its immunomodulation properties as already proven for its bioequivalence. Clinical trial information: 2011-001406-94.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1717-1726
Author(s):  
Miriam Wittmann ◽  
Vivi-Ann Larsson ◽  
Petra Schmidt ◽  
Gabriele Begemann ◽  
Alexander Kapp ◽  
...  

Interleukin-12 (IL-12) is a potent proinflammatory and immunoregulatory cytokine skewing T lymphocytes to express a type 1 cytokine pattern. Optimal expression of IL-12 mRNA and bioactivity in vitro requires specific priming of monocytes by interferon-γ (IFN-γ) or granulocyte-macrophage colony-stimulating factor (GM-CSF) before lipopolysaccharide (LPS) stimulation. We show here for the first time that the production of IL-12 by IFN-γ– or GM-CSF–primed human monocytes can be completely suppressed by preincubation with LPS (fromEscherichia coli Serotype 055:B5) for 6 to 24 hours before the priming procedure. A dose-dependent suppression of IL-12p70 was measured on the levels of intracellular cytokine production and cytokine secretion. mRNA studies on the expression of p40 and p35 showed an LPS-induced downregulation of both subunits. The results of several different experimental approaches suggest that IL-12 downregulation was not due to endogenous IL-10, IL-4, prostaglandin E2 (PGE2), tumor necrosis factor- (TNF-), or nitric oxide (NO) production induced by LPS. Moreover, preincubation of monocytes with LPS did not lead to a downregulation of the CD14 antigen, which is an LPS receptor. LPS preincubation in this experimental setting did not result in a general hyporesponsiveness of the monocytes, as IL-6 production as well as IFN-γ–induced upregulation of CD54 did not decline. Downregulation of IL-12 was not due to changes in mRNA stability. These findings show that the immunoregulatory important cytokine, IL-12, underlies itself a complex regulation.


Blood ◽  
2002 ◽  
Vol 99 (4) ◽  
pp. 1273-1281 ◽  
Author(s):  
Matthew J. Loza ◽  
Loris Zamai ◽  
Livio Azzoni ◽  
Emanuela Rosati ◽  
Bice Perussia

To determine whether production of type 1 and type 2 cytokines defines discrete stages of natural killer (NK) cell differentiation, cytokine expression was analyzed in human NK cells generated in vitro in the presence of interleukin-15 (IL-15) and/or IL-2 from umbilical cord blood hematopoietic progenitors. Like peripheral NK cells, the CD161+/CD56+ NK cells from these cultures contained a tumor necrosis factor alpha (TNF-α)+/granulocyte macrophage–colony-stimulating factor (GM-CSF)+ subset, an interferon gamma (IFN-γ)+ subset, mostly included within the former, and very few IFN-γ−/IL-13+ cells. Instead, most immature CD161+/CD56− NK cells, detectable only in the cultures with IL-2, produced IL-13, TNF-α, and GM-CSF, but not IFN-γ, and contained an IL-5+ subset. In short-term cultures with IL-12 and feeder cells, a proportion of the immature cells acquired the ability to produce IFN-γ. Part of these produced both IFN-γ and IL-13, irrespective of induced CD56 expression. These in vitro data indicate that ability to produce the type 2 cytokines IL-13 and IL-5 defines CD161+ NK cells at intermediate stages of differentiation, and is lost upon terminal functional differentiation, concomitant with acquired ability to produce IFN-γ.


2021 ◽  
Author(s):  
Marcela Vassão de Almeida Batista ◽  
Laís Teodoro Silva ◽  
Sadia Samer ◽  
Telma Miyuki Oshiro ◽  
Iart Luca Shytaj ◽  
...  

Abstract BackgroundWe developed a personalized Monocyte-Derived Dendritic Therapy (MDDCT) for HIV-infected individuals on suppressive antiretroviral treatment and evaluated HIV-specific T-cell responses.MethodsPBMCs were obtained from 10 HIV+ individuals enrolled in trial NCT02961829. Monocytes were differentiated into DCs using IFN-α and GM-CSF. After sequencing each patient’s HIV-1 Gag and determining HLA profiles, autologous Gag peptides were selected based on the predicted individual immunogenicity and used to pulse MDDCs. Three doses of the MDDCT were administered every 15 days. To assess immunogenicity, patients’ cells were stimulated in vitro with autologous peptides, and intracellular IL-2, TNF, and interferon-gamma (IFN-γ) production were measured in CD4+ and CD8+ T-cells. ResultsThe protocol of ex-vivo treatment with IFN-α and GM-CSF was able to induce maturation of MDDCs, as well as to preserve their viability for reinfusion. MDDCT administration was associated with increased expression of IL-2 in CD4+ and CD8+ T-cells at 15 and/or 30 days after the first MDDCT administration. Moreover, intracellular TNF and IFN-γ expression was significantly increased in CD4+ T-cells. The number of candidates that increased in vitro the cytokine levels in CD4+ and CD8+ T cells upon stimulation with Gag peptides from baseline to days 15 and from baseline to days 30 and days 120 after MDDCT was significant as compared to Gag unstimulated response. This was accompanied by an increasing trend in the frequency of polyfunctional T-cells over time, which was visible when considering both cells expressing two and three out of the three cytokines examined. ConclusionsMDDC has a mature profile, and this MDDCT promoted in-vitro T-cell immune responses in HIV-infected patients undergoing long-term suppressive antiretroviral treatment.NCT02961829: (Multi Interventional Study Exploring HIV-1 Residual Replication: a Step Towards HIV-1 Eradication and Sterilizing Cure, https://www.clinicaltrials.gov/ct2/show/NCT02961829, posted November 11th, 2016).


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A712-A712
Author(s):  
Randy Tsai ◽  
Hannah Fields ◽  
Xinlian Zhang ◽  
Valentina Ferrari ◽  
Soo Park ◽  
...  

BackgroundMyelodysplastic syndromes (MDS) are the most common acquired cause of bone marrow failure. Though DNA hypomethylating agents (HMAs) such as 5-Azacitidine (5-Aza) may increase survival of patients with higher-risk MDS, their mechanistic effects on hematopoiesis and immune cell function remain unclear. Using whole exome sequencing analysis, we previously identified MDS-related mutations within monocyte-derived dendritic cells (moDCs) from patients with higher-risk MDS. Here we examine the effect of 5-Aza on the phenotype of moDCs from the same cohort of patients with higher-risk MDS.MethodsPurified CD14+ cells were magnetically isolated from peripheral blood mononuclear cells from 6 patients with IPSS-R Intermediate/High/Very High-risk MDS (herein collectively referred to as higher-risk MDS). Cells were cultured in complete medium with IL-4 (800 U/mL) and GM-CSF (1200 U/mL) for 5 days. Freshly prepared 5-Aza or dimethylsulfoxide (DMSO) vehicle was added to cultures every 24 hours for a total of three 1 μM doses starting on Day 1. Immature moDCs were then stimulated with poly(I:C) (20 ng/mL), IL-1β (25 ng/mL), IFN-α (3000 U/mL), IFN-γ (1000 U/mL), and TNF-α (50 ng/mL) for 48 hours to generate moDCs. Flow cytometry analyses were performed with Guava easyCyte 8HT before and after addition of maturation cocktail.ResultsBased on trypan blue staining, in vitro addition of 5-Aza to CD14+ cells from 6 patients with higher-risk MDS did not result in a significant reduction in the percentage of cell survival on Day 5 and Day 7 in culture (figure 1a, p=0.8765 and p=0.7109, respectively). Treatment with 5-Aza significantly reduced the percentage of CD14-CD209+ moDCs on Day 7 following the addition of maturation cocktail (figure 1b, p<0.0001). Flow cytometry assessment showed comparable expression of common maturation and co-stimulatory markers such as CD80, CD83, CD86, HLA-DR, CD209, CD141, CD40, and CCR7 between 5-Aza and DMSO-treated immature moDCs on Day 5 (figure 1c). Similarly, 5-Aza treatment had no significant effect on marker expression on mature moDCs generated with maturation cocktail on Day 7.ConclusionsThere was no significant difference in maturation and co-stimulatory marker expression of immature and mature moDCs from patients with higher-risk MDS following in vitro treatment with 5-Aza. Though recent studies have identified important immunoregulatory effects of 5-Aza, functional changes that may occur within the dendritic cell population are not fully understood. Further studies are planned, including cytokine analyses and transcriptome sequencing of mature moDCs, and may help elucidate the immunological mechanisms underlying the therapeutic effects of 5-Aza in patients with higher-risk MDS.Ethics ApprovalThe study is being conducted as per the Declaration of Helsinki and was approved by the University of California San Diego Institutional Review Board (#161345) and registered with ClinicalTrials.gov (NCT02667093). All patients were provided written informed consent.Abstract 684 Figure 15-Aza and DMSO vehicle-treated moDCs from patients with higher-risk MDS were evaluated for phenotypic markers before and after stimulation with maturation cocktail. Purified CD14+ cells were magnetically isolated from PBMC from 6 higher-risk MDS patients and cultured with IL-4 and GM-CSF for 5 days followed by addition of poly(I:C), IL-1β, IFN-α, IFN-γ, and TNF-α for 48 hours at 37°C in a 5% CO2 incubator. Freshly prepared 5-Aza or DMSO vehicle was added to cultures every 24 hours for a total of three 1 μM doses starting on Day 1. (A) Cultured cells were stained with trypan blue to determine the percentage of cell survival on Day 5 and Day 7 in culture. (B) Treatment with 5-Aza significantly reduced the percentage of CD14-CD209+ moDCs on Day 7 following addition of maturation cocktail (p<0.0001). (C) The percentage of CD14-CD83+ cells is comparable between 5-Aza and vehicle-treated immature moDCs on Day 5 and mature moDCs on Day 7 (p=0.2434 and p=0.5846, respectively). (D) Cultured cells were stained with fluorochrome-conjugated antibodies to determine the expression of common maturation and co-stimulatory markers using flow cytometry. Cells were gated on CD14-CD11c+ to distinguish moDCs, and scatterplots represent the geometric mean fluorescence intensity (gMFI) of marker expression pre- and post-maturation. Individual dots represent one of three experimental replicates performed for the 6 higher-risk MDS patient samples. Each dot is labeled by MDS patient sample. Statistical analysis was performed by Welch's t-test using GraphPad Prism.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3459-3459
Author(s):  
Archana Thakur ◽  
Joseph P. Uberti ◽  
Voravit Ratanatharathorn ◽  
Lawrence G. Lum

Abstract Background. In our recent phase I immunotherapy (IT) trial in 23 women with metastatic breast cancer (MBC), 8 infusions of activated T cells (ATC) armed with anti-CD3 x anti-HER2 bispecific antibody (HER2Bi) given in combination with interleukin-2 (IL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF) induced specific anti-breast cancer immunity. This study investigated whether specific cellular and humoral anti-breast cancer immunity induced by infusions of HER2 bispecific antibody armed T cells (BATs) could be transferred after high dose chemotherapy (HDC) and stem cell transplant (SCT) in MBC patients. Methods. T cell were activated with OKT3 and expanded in IL-2. ATC were harvested, armed with HER2Bi, and cryopreserved in 8 doses for twice weekly infusions for 4 weeks along with IL-2 and GM-CSF. Seven to 14 days after the last infusion of BATs, the patient was leukapheresed again to obtain and expand immune T cells. Multiple infusions of immune ATC after the HDC and SCT were given to boost the transferred cellular and humoral immune responses which were monitored up to 24 months. Results. Six of 8 MBC patients enrolled were evaluable in the protocol, no dose-limiting toxicity, delays in engraftment, or life-threatening infections were observed. Five of 6 evaluable patients exhibited increased anti- breast cancer cytotoxicity and IFN-γ Elispots after vaccination with BATs and up to 18 months post SCT. Serum and culture supernatants from in vitro antibody synthesis assay showed gradual increases in anti-SK-BR-3 IgG levels after SCT. Serum cytokine profile showed increases in IL-12 and Th1 cytokines. One out of 6 evaluable patients who rapidly progressed showed poor immune response, had high serum levels of Th2 cytokines and no evidence of transfer of immunity. Flow cytometry analysis of Vβ repertoire pattern in PBMC collected post IT and post SCT indicate transfer of the major Vβ clones post SCT that produced IFN-γ upon stimulation with breast cancer cells (Fig. 1). A significant correlation (r=1.0; p<0.002) between immune ATC cytotoxicity directed at breast cancer cells and time to progression (TTP) suggests that more robust vaccinations with a Th1 shift in cytokine profiles can lead to clinical benefit (Fig. 2). Conclusions. Our pilot study suggests that cellular and humoral immunity was transferred and boosted using immune T cells after SCT. There was robust reconstitution of T and B cell functions early after SCT as evidenced by CTL and NK activity, IFN-γ EliSpots, in vivo/in vitro antibody synthesis, and Th1 cytokine responses.BATs induced endogenous anti- breast cancer cellular, humoral and innate immunity that could be detected after SCT and may have provided clinically meaningful anti-tumor immunity. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document