CFD for Combustion Chamber Development: Influence of Valve Pockets on the Combustion Process

Author(s):  
M. Truant ◽  
S. Dehoux ◽  
P. Gastaldi

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2729
Author(s):  
Ireneusz Pielecha ◽  
Sławomir Wierzbicki ◽  
Maciej Sidorowicz ◽  
Dariusz Pietras

The development of internal combustion engines involves various new solutions, one of which is the use of dual-fuel systems. The diversity of technological solutions being developed determines the efficiency of such systems, as well as the possibility of reducing the emission of carbon dioxide and exhaust components into the atmosphere. An innovative double direct injection system was used as a method for forming a mixture in the combustion chamber. The tests were carried out with the use of gasoline, ethanol, n-heptane, and n-butanol during combustion in a model test engine—the rapid compression machine (RCM). The analyzed combustion process indicators included the cylinder pressure, pressure increase rate, heat release rate, and heat release value. Optical tests of the combustion process made it possible to analyze the flame development in the observed area of the combustion chamber. The conducted research and analyses resulted in the observation that it is possible to control the excess air ratio in the direct vicinity of the spark plug just before ignition. Such possibilities occur as a result of the properties of the injected fuels, which include different amounts of air required for their stoichiometric combustion. The studies of the combustion process have shown that the combustible mixtures consisting of gasoline with another fuel are characterized by greater combustion efficiency than the mixtures composed of only a single fuel type, and that the influence of the type of fuel used is significant for the combustion process and its indicator values.



2013 ◽  
Vol 744 ◽  
pp. 35-39
Author(s):  
Lei Ming Shi ◽  
Guang Hui Jia ◽  
Zhi Fei Zhang ◽  
Zhong Ming Xu

In order to obtain the foundation to the research on the Diesel Engine YN4100QB combustion process, exhaust, the optimal design of combustion chamber and the useful information for the design of exhaust muffler, the geometric model and mesh model of a type internal combustion engine are constructed by using FIRE software to analyze the working process of internal combustion engine. Exhaust noise is the main component of automobile noise in the study of controlling vehicle noise. It is primary to design a type of muffler which is good for agricultural automobile engine matching and noise reduction effect. The present car mufflers are all development means. So it is bound to cause the long cycle of product development and waste of resources. Even sometimes not only can it not reach the purpose of reducing the noise but also it leads to reduce the engine dynamic. The strength of the exhaust noise is closely related to engine combustion temperature and pressure. The calculation and initial parameters are applied to the software based on the combustion model and theory. According to the specific operation process of internal combustion engine. Five kinds of common operation condition was compiled. It is obtained for the detailed distribution parameters of combusted gas temperature pressure . It is also got for flow velocity of the fields in cylinder and given for the relation of the parameters and crankshaft angle for the further research. At the same time NOx emissions situation are got. The numerical results show that not only does it provide the 3D distribution data in different crank shaft angle inside the cylinder in the simulation of combustion process, but also it provides a basis for the engine combustion ,emission research, the optimization design of the combustion chamber and the useful information for the designs of muffler.



Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.



Author(s):  
O.V. Guskov ◽  
V.S. Zakharov ◽  
Minko

The development and research of high-speed aircrafts and their individual parts is an urgent scientific task. In the scientific literature there is information about the integral characteristics of aircrafts of this type, but there is no detailed consideration of such an important part as the transition channel between the air intake and the combustion chamber. The article considers several flow path configurations. The numerical simulation results of hydrogen combustion in the channels of variable cross section using a detailed kinetic mechanism are presented. Based on the analysis of the data obtained, the models of the transition channel and the combustion chamber showing the best characteristics were selected. The impulse and the fuel combustion efficiency are used as criteria for comparing the flow paths. The difference in the application of two calculation methods is described. The presented results and calculation methods can be used at the stage of computational research of the working processes in advanced power plants.



Author(s):  
G. Arvind Rao ◽  
Yeshayahou Levy ◽  
Ephraim J. Gutmark

Flameless combustion (FC) is one of the most promising techniques of reducing harmful emissions from combustion systems. FC is a combustion phenomenon that takes place at low O2 concentration and high inlet reactant temperature. This unique combination results in a distributed combustion regime with a lower adiabatic flame temperature. The paper focuses on investigating the chemical kinetics of an prototype combustion chamber built at the university of Cincinnati with an aim of establishing flameless regime and demonstrating the applicability of FC to gas turbine engines. A Chemical reactor model (CRM) has been built for emulating the reactions within the combustor. The entire combustion chamber has been divided into appropriate number of Perfectly Stirred Reactors (PSRs) and Plug Flow Reactors (PFRs). The interconnections between these reactors and the residence times of these reactors are based on the PIV studies of the combustor flow field. The CRM model has then been used to predict the combustor emission profile for various equivalence ratios. The results obtained from CRM model show that the emission from the combustor are quite less at low equivalence ratios and have been found to be in reasonable agreement with experimental observations. The chemical kinetic analysis gives an insight on the role of vitiated combustion gases in suppressing the formation of pollutants within the combustion process.



Author(s):  
M Abu-Qudais ◽  
D. B. Kittelson

The purpose of this research was to investigate the influence of the in-cylinder surfaces on the net emission of the particulate matter in the exhaust of a single cylinder, diesel engine. In order to obtain this information, time-resolved sampling was done to characterize the particulate matter emitted in the engine exhaust. A rotating probe sampled the free exhaust plume once each engine cycle. The rotation of the probe was synchronized with the engine cycle in such a way that the samples could be taken at any predetermined crank angle degree window. The sampling probe was designed for isokinetic sampling in order to obtain reliable results. To characterize the exhaust particulate in real time, a filter for mass concentration measurements was used. The results showed about 45 per cent higher mass concentrations as well as particles of larger diameter emitted during blowdown than late in the displacement phase of the exhaust stroke. This suggests that high in-cylinder shear rates and velocities which are associated with the blowdown process, cause the deposited soot to be re-entrained from the surfaces of the combustion chamber, where re-entrainment is favoured by conditions of high surface shear. A mathematical model to predict the amount of soot re-entrained from the cylinder walls is presented. This model is based on information presented in the literature along with the results of the time-resolved measurements of mass concentration. This model supported the hypothesis of soot deposition during the combustion process, with subsequent re-entrainment during the blowdown process of the exhaust stroke.



2017 ◽  
Vol 170 (3) ◽  
pp. 121-125
Author(s):  
Marek BRZEŻAŃSKI ◽  
Tadeusz PAPUGA ◽  
Łukasz RODAK

The article considers the analysis of combustion process of hydrogen-air mixture of variable composition. Direct injection of hydrogen into the isochoric combustion chamber was applied and the mixture formation took place during the combustion process. The influence of the dose distribution of the fuel supplied before and after ignition on the formation of the flame front and the course of the pressure in the isochoric combustion chamber was discussed. The filming process and registration of pressure in the isochoric chamber during research of combustion process was applied.



Author(s):  
Usama J. Mizher ◽  
Peter A. Velmisov

Abstract. The search for new solutions in the field of energy, preventing negative impact on the environment, is one of the priority tasks for modern society. Natural gas occupies a stable position in the demand of the UES of Russia for fossil fuel. Biogas is a possible alternative fuel from organic waste. Biogas has an increased content of carbon dioxide, which affects the speed of flame propagation, and a lower content of methane, which reduces its heat of combustion. However, the combined combustion of natural gas and biogas, provided that the mixture of fuel and oxidizer is well mixed, can, on the one hand, reduce the maximum adiabatic temperature in the combustion chamber of power boilers at TPPs, and, on the other, increase the stability of biogas combustion. For the combined combustion of natural gas and biogas in operating power boilers, it is necessary to reconstruct the existing burners. For a high-quality reconstruction of burners capable of providing stable and low-toxic combustion of fuel, it is important to have theoretical data on the combustion effect of combustion of combinations of organic fuels on the temperature distribution in the combustion zone and on its maximum value. In this paper, self-similar solutions of the energy equation for axisymmetric motion of a liquid (gas) in a model of a viscous incompressible medium are obtained. Basing on them, a stationary temperature field in swirling jets is constructed. A set of programs based on the ANSYS Fluent software solver has been developed for modeling and researching of thermal and gas-dynamic processes in the combustion chamber. On the basis of the k - ϵ (realizable) turbulence model, the combustion process of a swirling fuel-air mixture is simulated. The results of an analytical and numerical study of the temperature and carbon dioxide distribution in the jet are presented.



2019 ◽  
Vol 213 ◽  
pp. 02046
Author(s):  
Danuta Król ◽  
Sławomir Poskrobko

The aim of the study was to present the possibility of reducing the emission of HCl to the atmosphere and the possibility of limiting the formation of PCDD/F in the technologies of incineration of waste fuels and incineration of animal waste. Waste fuel and animal biomass were burned in a two-stage system i.e.: Io-gasification and IIo-combustion of gas products of gasification. As part of the implementation, the reduction of HCl emissions to air was investigated when Ca(OH)2 was added as an additive to the fuel from waste. Ca(OH)2 bonded HCl releasing into the gas space in the combustion process. HCl binding in the combustion chamber not only limited its emission to the atmosphere. Its elimination also limited the possibility of creating PCDD/F. In case of animal waste, HCl was captured with CaO produced from the decomposition of bone material (hydroxyapatite). The efficiency of this process was low. It was thus necessary to remove it in the built-in exhaust purification plant.



Sign in / Sign up

Export Citation Format

Share Document