Detection and localization of an underwater docking station in acoustic images using machine learning and generalized fuzzy hough transform
AbstractLong underwater operations with autonomous battery charging and data transmission require an Autonomous Underwater Vehicle (AUV) with docking capability, which in turn presume the detection and localization of the docking station. Object detection and localization in sonar images is a very difficult task due to acoustic image problems such as, non-homogeneous resolution, non-uniform intensity, speckle noise, acoustic shadowing, acoustic reverberation and multipath problems. As for detection methods which are invariant to rotations, scale and shifts, the Generalized Fuzzy Hough Transform (GFHT) has proven to be a very powerful tool for arbitrary template detection in a noisy, blurred or even a distorted image, but it is associated with a practical drawback in computation time due to sliding window approach, especially if rotation and scaling invariance is taken into account. In this paper we use the fact that the docking station is made out of aluminum profiles which can easily be isolated using segmentation and classified by a Support Vector Machine (SVM) to enable selective search for the GFHT. After identification of the profile locations, GFHT is applied selectively at these locations for template matching producing the heading and position of the docking station. Further, this paper describes in detail the experiments that validate the methodology.