Integrating Crop and Landscape Management into New Crop Protection Strategies to Enhance Biological Control of Oilseed Rape Insect Pests

Author(s):  
Adrien Rusch ◽  
Muriel Valantin-Morison ◽  
Jean Pierre Sarthou ◽  
Jean Roger-Estrade
2020 ◽  
Vol 4 (3) ◽  
pp. 195-210
Author(s):  
Joshua Kellogg ◽  
Seogchan Kang

Efforts to meet the steadily increasing global need for plant products without continuously expanding the environmental footprint of crop production face several convoluted challenges. One challenge is minimizing crop loss due to diseases and pests without heavily relying on synthetic pesticides. Microorganisms secrete diverse molecules to influence surrounding organisms and environments. Research on these molecules has uncovered diverse mechanisms underpinning both beneficial and harmful microbial interactions and has also resulted in new crop protection strategies. However, compared with rapid advances in research on secreted proteins, research on metabolites, particularly volatile compounds, considerably lags. Diverse roles of secreted metabolites are highlighted here to underscore the need for systematically exploring microbial chemical ecology. This review focuses on how genomics, especially metabolomics, can enlighten the nature and mechanism of diverse microbial chemical ecology processes crucial for plant health and how to translate resulting insights into environment-friendly and sustainable crop protection strategies. Metabolomics entails comprehensive and rapid profiling of an entire measurable set of compounds in complex mixtures derived from organisms or environments using a growing array of analytical instruments. Metabolomics has expediated discoveries of novel bioactive compounds and subsequent studies on their mode of action. We review a variety of metabolomics tools and how they can be integrated with other tools to study and harness microbial chemical ecology.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 805
Author(s):  
Baltazar J. Ndakidemi ◽  
Ernest R. Mbega ◽  
Patrick A. Ndakidemi ◽  
Philip C. Stevenson ◽  
Steven R. Belmain ◽  
...  

Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically relies on chemical pesticides, which have adverse effects on the wildlife, crop pollinators, natural enemies, mammals, and the development of resistance by pests. Nature-based solutions —in particular, using biological control agents with sustainable approaches that include biopesticides, resistant varieties, and cultural tools—are alternatives to chemical control. However, significant barriers to their adoption in SSA include a lack of field data and knowledge on the natural enemies of pests, safety, efficacy, the spectrum of activities, the availability and costs of biopesticides, the lack of sources of resistance for different cultivars, and spatial and temporal inconsistencies for cultural methods. Here, we critically review the control options for bean pests, particularly the black bean aphid (Aphis fabae) and pod borers (Maruca vitrata). We identified natural pest regulation as the option with the greatest potential for this farming system. We recommend that farmers adapt to using biological control due to its compatibility with other sustainable approaches, such as cultural tools, resistant varieties, and biopesticides for effective management, especially in SSA.


2020 ◽  
Vol 10 (1) ◽  
pp. 360 ◽  
Author(s):  
Spiridon Mantzoukas ◽  
Panagiotis A. Eliopoulos

Among the non-chemical insect control methods, biological control is one of the most effective human and environmentally friendly alternatives. One of the main biological control methods is the application of entomopathogenic fungi (EPF). Today, biological crop protection with EPF plays a key role in projects for the sustainable management of insect pests. EPF have several advantages over conventional insecticides, including cost-effectiveness, high yield, absence of harmful side-effects for beneficial organisms, fewer chemical residues in the environment and increased biodiversity in ecosystems. Apart from direct application as contact bioinsecticides, EPF are able to colonize plants as endophytes acting not only as pest and disease control agents but also as plant growth promoters. The present paper presents an outline of the biocontrol potential of several EPF, which could be harnessed for the development of new integrated pest Management (IPM) strategies. Emphasis is given on benefits of endophytic EPF, on issues for practical application and in fields in need of further research. Our findings are discussed in the context of highlighting the value of entomopathogenic fungal endophytes as an integral part of pest management programs for the optimization of crop production.


2000 ◽  
Vol 11 (5) ◽  
pp. 200-202 ◽  
Author(s):  
David V. Alford

2022 ◽  
Vol 8 (1) ◽  
pp. 54
Author(s):  
Alsayed Alfiky

The compound negative impact of insect pests attacking agricultural ecosystems includes (i) direct yield losses from damaged crops, (ii) the economic cost of the attempt to prevent these losses and (iii) the negative short- and long-term hazard effects of chemical pesticides on human and environmental health. Entomopathogenic fungi (EMPF) are a group of microorganisms that represent the natural enemies of a number of crop pests, presenting an opportunity to harness their evolutionary fine-tuned relationship with their insect hosts as biocontrol agents in integrated pest management programs. The aim of this study was to establish an indigenous EMPF collection via the Galleria mellonella (greater wax moth) entrapment method from the soils of Nile Delta, Egypt. Obtained insect associated fungal isolates were bio-assayed for pathogenicity against the serious pest Spodoptera litura and Tenebrio molitor, and the seven outperforming isolates were selected for molecular identification and thermotolerance assay. Based on ITS sequence analysis and phylogeny, selected isolates were identified as Beauveria bassiana (four isolates), Metarhizium anisopliae (two isolates) and one isolate of Cordyceps javanica. The obtained results demonstrated (i) the efficacy of using insect baiting coupled with molecular identification and pathogenicity screening to isolate EMPF to control insect pests, and (ii) the availability of indigenous virulent EMPF in Nile Delta’s soil, which can be exploited for the development of sustainable crop protection strategies.


2003 ◽  
Vol 31 (1) ◽  
pp. 123-127 ◽  
Author(s):  
J.A. Pickett ◽  
H.B. Rasmussen ◽  
C.M. Woodcock ◽  
M. Matthes ◽  
J.A. Napier

When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.


Author(s):  
L. D. Kulava ◽  
N. N. Karpun ◽  
E. N. Zhuravleva ◽  
L. Ya. Ayba

Abkhazian mandarin crop is infected by over 50 pest species incurring marketable yield losses up to 83 %, which prioritises the development of new crop protection strategies that avoid organophosphorus compound usage leading to pest resistance. The studies were conducted during 2019–2020 in full-grown Citrus unshiu mandarin plantations at the Gulrypsh District of the Republic of Abkhazia adhering to the common protocol. Seven schemes were covered in study for the mandarin crop protection from rust mite Phyllocoptruta oleivora Ashmead and brown marble bug Halyomorpha halys Stål. Two schemes have been selected as optimised: scheme 5 (treatment 1 with Confidor Extra tank mix, 0.05 % WDG (imidacloprid) and 0.15 % Cytovit; treatment 2 with Vertimek tank mix, 0.1 % EC (abamectin, 18 g/L) and 0.15 % Cytovit; treatments 3--4 with Karate Zeon tank mix, 0.05 % OEC (lambda-cyhalothrin, 50 g/L) and 0.15 % Cytovit) and scheme 6 (treatment 1 with Metomax tank mix, 0.15 % SC (methomil 250 g/kg + bifenthrin 25 g/kg) and Vertimek, 0.1 % EC (abamectin, 18 g/L); treatments 2--3 with Karate Zeon, 0.05 % ISS (lambda-cyhalothrin, 50 g/L) and Vertimek, 0.1 % EC (abamectin, 18 g/L); treatment 4 with Karate Zeon, 0.05 % OEC (lambda-cyhalothrin, 50 g/L)). The schemes’ biological efficacy against mandarin pests was 80.0–84.2 and 81.3–87.7 %, providing for an average fruit weight improvement by 89.5 and 94.7 % vs. control, and 22.0 and 25.4 % vs. benchmark, respectively. Yield excess in the schemes was 85.7 and 91.7 % vs. control, and 36.8 and 41.3 % vs. economic cultivation, respectively. Class 1 fruits accounted for 63.3–65.6 % total harvest in schemes 5 and 6, whilst were not obtained in control.


2015 ◽  
Vol 22 (2) ◽  
pp. 149-163 ◽  
Author(s):  
Maria Macedo ◽  
Caio de Oliveira ◽  
Poliene Costa ◽  
Elaine Castelhano ◽  
Marcio Silva-Filho

2004 ◽  
Vol 64 (2) ◽  
pp. 237-242 ◽  
Author(s):  
M. C. Lacerda ◽  
A. M. R. M. Ferreira ◽  
T. V. Zanuncio ◽  
J. C. Zanuncio ◽  
A. S. Bernardino ◽  
...  

Biological control has been reducing the use of chemical products against insect pests, specially predatory Pentatomidae. Species of this group can present high variations in their life cycle as a result of their diet. Thus, the objective of this research was to study nymph development and reproduction of Podisus distinctus (Stäl, 1860) (Heteroptera: Pentatomidae) fed on Bombyx mori L., 1758 (Lepidoptera: Bombycidae) larvae (T1), compared to those fed on Tenebrio molitor L., 1758 (Coleoptera: Tenebrionidae) (T2) and Musca domestica L., 1758 (Diptera: Muscidae) larvae (T3) at a temperature of 25 ± 0.5ºC, relative humidity of 70 ± 2%, and photophase of 12 h. Predators fed on B. mori showed duration of the nymph phase (18.68 ± 1.02) similar to those fed on T. molitor (18.32 ± 1.49). Pre-oviposition and oviposition periods and number of egg masses, besides eggs and nymphs per female, were higher with B. mori (5.83 ± 2.02; 15.00 ± 7.40; 8.42 ± 1.84; 296.69 ± 154.75; and 228.55 ± 141.04, respectively) while longevity of males and females of P. distinctus was 25.76 ± 16.15 and 35.00 ± 16.15 days with T. molitor, and 20.57 ± 13.60 and 23.46 ± 12.35 days with B. mori, respectively.


2012 ◽  
Vol 144 (6) ◽  
pp. 779-791 ◽  
Author(s):  
G.C. Cutler ◽  
J.M. Renkema ◽  
C.G. Majka ◽  
J.M. Sproule

AbstractThe Carabidae (Coleoptera) are a diverse family of beetles with almost 300 species identified in Nova Scotia, Canada. Carabid beetle communities have been studied in several agricultural systems, but not wild blueberries, an important crop in eastern Canada. In the interest of potentially developing conservation biological control programs in wild blueberry, we collected Carabidae in crop (fruit-bearing) and sprout (vegetative) blueberry fields in Nova Scotia in order to assess species diversity and abundance over space and time. Over 3200 specimens were collected, representing 51 species. A large portion of collected specimens (39%) were nonnative, and the most abundant species were generally predacious and synanthropic. Species diversity tended to be higher near forest edges than further into fields, but not for all abundant species. Several of the most prominent predators showed significant differences in preference of crop versus sprout fields, distribution throughout fields, and seasonable abundance. These findings have implications for conservation biological control efforts with carabid beetles against several insect pests in wild blueberry.


Sign in / Sign up

Export Citation Format

Share Document