Distribution of Ions in the Octahedral Sheet of Micas

Author(s):  
W. E. E. Stone ◽  
J. Sanz
Keyword(s):  
Clay Minerals ◽  
1986 ◽  
Vol 21 (5) ◽  
pp. 861-877 ◽  
Author(s):  
A. Decarreau ◽  
D. Bonnin

AbstractSyntheses of ferric smectites were performed at low temperature (75° C by aging coprecipitated gels of silica and Fe2+-sulphate under initially reducing then oxidizing conditions. Under strictly reducing conditions only nuclei of a trioctahedral ferrous stevensite were observed and crystal growth did not take place. When a spontaneous oxidization, in contact with air, was effected, the ferrous smectite nuclei transformed rapidly into a ferric, nontronite-like, smectite. Crystallogenesis of the ferric smectite was studied by XRD, IR, DTA, Mössbauer and EPR spectroscopies. The end-synthesis smectite contained only Fe3+ions, all located in the octahedral sheet. This clay was mixed with a cryptocrystalline iron oxide phase containing one-third of the iron atoms and undetectable by XRD.


Clay Minerals ◽  
1985 ◽  
Vol 20 (3) ◽  
pp. 367-387 ◽  
Author(s):  
A. Manceau ◽  
G. Calas ◽  
A. Decarreau

AbstractNickel crystal chemistry was systematically studied in various phyllosilicates, mainly the natural phases selected from the ‘garnierites’ of the supergene ore deposits of New Caledonia. Minerals which do not usually occur in New Caledonian parageneses were synthesised, as they could represent intermediate phases of genetic importance. In the kerolite-pimelite series, a linear relationship occurred between the ratioI(13,20)/I(02,11)of thehkbands and Ni-content. Diffuse reflectance spectra were used to derive the crystal chemical parameters of Ni. These confirmed its divalent character and its occupation of octahedral sites; the resulting structural distortion was slight and could not be detected in some minerals. There was no optical evidence for Ni atoms in 4-fold coordination. The two main parameters which showed significant variations among the studied phases were site distortion and crystal field stabilization energy (CFSE). Site distortion was at a maximum in trioctahedral smectites and sepiolite. CFSE depended on the mineralogy, crystallinity and chemical composition (Al-content) of the phase. Finally, clay minerals are classified according to the increasing stability of Ni in the octahedral sheet, which has been tentatively related to the geochemical distribution of this element. Secondary minerals are usually enriched vs. primary ones and among them are nepouite and kerolite which exhibit a high CFSE in contrast to sepiolite.


Clay Minerals ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 373-398 ◽  
Author(s):  
M. Egli ◽  
A. Mirabella ◽  
G. Sartori ◽  
D. Giaccai ◽  
R. Zanelli ◽  
...  

AbstractTwo soil profile sequences on paragneiss debris in the Val di Rabbi (Northern Italy) along an altitude gradient ranging from 1200 to 2400 m a.s.l. were studied to evaluate the effect of aspect on the weathering of clay minerals. All the soils had a coarse structure, a sandy texture and a low pH. Greater weathering intensities of clay-sized phyllosilicates (greater content of smectites) were observed in soils on the north-facing slope. On the south-facing slope, smectite was found only in the surface horizon of the soil profile at the highest altitude. Hot citrate treatment of north-facing soils revealed the presence of low-charged 2:1 clay minerals, the expansion of which was hindered in the untreated state by interlayered polymers. However, the hot citrate treatment encountered some problems with the samples of the south-facing soils: as confirmed by Fourier transform infrared spectroscopy, the hot citrate treatment was unable to remove all interlayer Al polymers. The 2:1 phyllosilicates were not expanded by ethylene glycol solvation in several samples, although thermogravimetric analyses indicated the presence of clay minerals with interlayer H2O. At the same time, the collapse of clay minerals to 1.0 nm following K-saturation was evident. Theoretically, this should indicate that 2:1 phyllosilicates had no evident substitution of trioctahedral cations (Mg2+, Fe2+) by dioctahedral cations (Al3+ and Fe3+). X-ray diffraction analysis of the d060 region and determination of the layer charge of clay minerals by the long-chain (C18) alkylammonium ion, however, did not confirm this. A transformation from trioctahedral to dioctahedral species was observed and low-charge clay minerals (ξ ~0.30) were identified in the surface horizons of the south-facing sites. In the south-facing soils, the podzolization process was less pronounced because of a lower water flux through the soil and probably less complexing organic molecules that would remove the interlayer polymers. Besides the eluviation process, clay minerals underwent a process of ionic substitutions in the octahedral sheet that led to the reduction of the layer charge. This process was more obvious in the north-facing sites.


Author(s):  
Carla Romina Luna ◽  
Walter Guillermo Reimers ◽  
Marcelo Avena ◽  
Alfredo Juan

We have studied, using DFT calculations, some geometrical and electronic properties of delaminated pyrophyllite (D-P) and the corresponding layers that resulted from three isomorphic substitution on the octahedral sheet (Mg2+,...


Author(s):  
Garrison Sposito

Structural charge arises on the surfaces of soil mineral particles in which either cation vacancies or isomorphic substitutions of cations by cations of lower valence occur. The principal minerals bearing structural charge are therefore the micas (Section 2.2), the 2:1 clay minerals (Section 2.3), or the Mn(IV) oxide, birnessite (Section 2.4). These three classes of mineral are all layer type and the cleavage surface on which their structural charge is manifest is a plane of O ions. The plane of O ions on the cleavage surface of a layer-type aluminosilicate is called a siloxane surface.This plane is characterized by hexagonal symmetry in the configuration of its constituent O ions, as shown at the top of Fig. 2.3 and, more explicitly, on the right side of Fig. 2.4, where a portion of the siloxane surface of the micas is depicted. Reactive molecular units on the surfaces of soil particles are termed surface functional groups. The functional group associated with the siloxane surface is the roughly hexagonal (strictly speaking, ditrigonalbecause the hexagonal symmetry is distorted when the tetrahedral sheet is fused to an octahedral sheet to form a layer) cavity formed by six corner-sharing silica tetrahedra. This cavity has a diameter of about 0.26 nm. The reactivity of the siloxane cavity depends on the nature of the electronic charge distribution in the layer structure. If there are no nearby isomorphic cations substitutions to create a negative charge, the O ions bordering the siloxane cavity function as an electron cloud donor that can bind molecules weakly through the van der Waals interaction. These interactions are akin to those underlying the hydrophobic interaction, discussed in Section 3.5, because the O in the siloxane surface can form only very weak hydrogen bonds with water molecules. Therefore, uncharged patches on siloxane surfaces may be considered hydrophobic regions to a certain degree, with, accordingly, an attraction for hydrophobic organic molecules. However, if isomorphic substitution of Al3+ by either Fe2+ or Mg2+ occurs in the octahedral sheet, the resulting structural charge is manifest on the siloxane cavities, as discussed in Section 2.3.


Clay Minerals ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Yves Moëlo ◽  
Emmanuel Fritsch ◽  
Eric Gloaguen ◽  
Olivier Rouer

AbstractSeveral generations of chamosite, including a red variety, occur in the Ordovician hydrothermalized oolitic ironstone from Saint-Aubin-des-Châteaux (Armorican Massif, France). Their chemical re-examination indicates a low Mg content (0.925 < Fe/(Fe + Mg) < 0.954), but a significant variation in IVAl. Minor vanadium is present at up to 1.1 wt.% oxide. Variations in IVAl, the vanadium content and the colour of chamosite are related to the hydrothermal reworking of the ironstone. Taking into account other published data, the ideal composition of chamosite is (Fe5–xAl1+x)(Si3–xAl1+x)O10(OH)8, with 0.2 < x < 0.8 (0.2: equilibrium with quartz; 0.8: SiO2 deficit). The red chamosite (IIb polytype) has a mean composition of (Fe3.87Mg0.23Mn0.01□0.07Al1.74V0.07)(Si2.33Al1.67)O10(OH)8. This chamosite is strongly pleochroic, from pale yellow (E || (001)) to deep orange red (E ⊥ (001)). Visible–near-infrared absorbance spectra show a specific absorption band centred at ~550 nm for E ⊥ (001), due to a proposed new variety of Fe/V intervalence charge-transfer mechanism in the octahedral sheet, possibly Fe2+ – V4+ → Fe3+ – V3+. While the formation of green chamosite varieties is controlled by reducing conditions due to the presence of organic matter as a buffer, that of red chamosite would indicate locally a weak increase of fO2 related to oxidizing hydrothermal solutions.


Soil Research ◽  
1998 ◽  
Vol 36 (3) ◽  
pp. 423 ◽  
Author(s):  
Cristina Volzone

Kaolinite, vermiculite, and montmorillonites were treated with solutions containing hydroxy-chromium (OH-Cr) species. The OH-Cr solution was prepared by adding 0·2 М NaOH to 0·1 М chromium nitrate solution and allowing the solution to stand at 60°C for 1 day. The samples were characterised by chemical analyses, N2 adsorption-desorption isotherms, and X-ray diffraction. The textural and structural behaviours of kaolinite, vermiculite, and the montmorillonites were analysed in the original samples and after treatment with the polymeric OH-Cr species. The montmorillonites showed higher retention of chromium (19·20%), higher basal spacing (2·06 nm), and higher micropore surface area (276 m2/g) than the vermiculite (3·70%, 1·49 nm, 13 m2/g) and kaolinite (1·15%, 0·73 nm, ~1 m2/g) clays after treatment with the OH-Cr species. In contrast, the external surface area increased from 6 to 9 m2/g for kaolinite and from 18 to 24 m2/g for vermiculite, and decreased from 7 to 4 m2/g for montmorillonite after treatment with the OH-Cr solution. The residual chromium, basal spacing, and texture of the clays after treatment with the OH-Cr species were primarily related to the magnitude of the negative charge originating from the octahedral sheet.


Clay Minerals ◽  
1970 ◽  
Vol 8 (3) ◽  
pp. 291-303 ◽  
Author(s):  
M. J. Wilson

AbstractThe weathering of biotite in a sedentary soil profile developed on biotitehornblende- rock near Rehiran, Inverness-shire has been investigated by optical, X-ray, chemical, infrared and differential thermal methods. In the C horizon a direct transformation to hydrobiotite was observed. This involves oxidation of all the ferrous iron present and subsequent movement of ferric ions from the octahedral sheet. In the B horizon weathering proceeds to a fully expanded 14A phase and this was identified as interstratified vermiculite-chlorite in a 1:1 ratio. Chemical analysis indicates that this stage is accompanied by a substantial addition of magnesium, much of which goes to form the brucite-like interlayers. In the more acid surface horizon these interlayers tend to break down thus yielding a more vermiculitic product. The possible general implications of this type of biotite weathering are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document