Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus

1993 ◽  
pp. 239-260 ◽  
Author(s):  
J. T. Baker ◽  
L. H. Allen
Vegetatio ◽  
1993 ◽  
Vol 104-105 (1) ◽  
pp. 239-260 ◽  
Author(s):  
J. T. Baker ◽  
L. H. Allen

2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447f-448
Author(s):  
Millie S. Williams ◽  
Terri Woods Starman ◽  
James E. Faust

Flower growers experience decreased consumer satisfaction with plant species that cease flowering during the summer. The objective of this experiment was to characterize the heat tolerance of four specialty floral crop species in order to predict their summer performance in the different climatalogical regions of the United States. The effect of increasing temperatures on the duration of postharvest flower development was determined for Ageranthemum frutescens `Butterfly' and `Sugar Baby', Brachycome hybrid `Ultra', and Sutera cordata `Snowflake'. Plants were grown in a 18 °C greenhouse until marketable with foliage covering the container and flowers distributed evenly across the plant canopy. Plants were then placed in a phytotron to determine their heat tolerance. Temperature set points of 18, 23, 28, and 33 °C were delivered serially at 2-week intervals, starting at 18 °C. Plants were then returned to 18 °C after the 33 °C treatment. Immature flower bud, mature flower bud, flower and senesced flower numbers were collected once per week. Sutera `Snowflake', and Brachycome `Ultra' had the greatest flower number at the 23 °C temperature, decreasing in the 28 °C environment. Argeranthemum `Butterfly' and `Sugar Baby' had greatest flower number at 28 °C, but flowers were smaller and of lower quality than at 23 °C. Flower development of all cultivars ceased at 33 °C, but when plants were returned to the 18 °C production greenhouse, flower development resumed. According to normal average daily temperatures in Knoxville, Tenn., Ageranthemum frutescens `Butterfly' and `Sugar Baby' would flower until mid-June, while Brachycome hybrid `Ultra' and Sutera cordata `Snowflake' would flower until mid-May.


Botany ◽  
2013 ◽  
Vol 91 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Julian C. Verdonk ◽  
Michael L. Sullivan

Gene silencing is a powerful technique that allows the study of the function of specific genes by selectively reducing their transcription. Several different approaches can be used, however they all have in common the artificial generation of single stranded small ribonucleic acids (RNAs) that are utilized by the endogenous gene silencing machinery of the organism. Artificial microRNAs (amiRNA) can be used to very specifically target genes for silencing because only a short sequence of 21 nucleotides of the gene of interest is used. Gene silencing via amiRNA has been developed for Arabidopsis thaliana (L.) Heynh. and rice using endogenous microRNA (miRNA) precursors and has been shown to also work effectively in other dicot species using the arabidopsis miRNA precursor. Here, we demonstrate that the arabidopsis miR319 precursor can be used to silence genes in the important forage crop species alfalfa (Medicago sativa L.) by silencing the expression of a transgenic beta-glucuronidase (GUSPlus) target gene.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John T. Lovell ◽  
Nolan B. Bentley ◽  
Gaurab Bhattarai ◽  
Jerry W. Jenkins ◽  
Avinash Sreedasyam ◽  
...  

AbstractGenome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence–absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the ‘Pawnee’ cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence–absence and functional annotation database among genomes and within the two outbred haplotypes of the ‘Lakota’ genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 885
Author(s):  
Pooja Tripathi ◽  
Sangita Subedi ◽  
Abdul Latif Khan ◽  
Yong-Suk Chung ◽  
Yoonha Kim

Roots play an essential function in the plant life cycle, as they utilize water and essential nutrients to promote growth and plant productivity. In particular, root morphology characteristics (such as length, diameter, hairs, and lateral growth) and the architecture of the root system (spatial configuration in soil, shape, and structure) are the key elements that ensure growth and a fine-tuned response to stressful conditions. Silicon (Si) is a ubiquitous element in soil, and it can affect a wide range of physiological processes occurring in the rhizosphere of various crop species. Studies have shown that Si significantly and positively enhances root morphological traits, including root length in rice, soybean, barley, sorghum, mustard, alfalfa, ginseng, and wheat. The analysis of these morphological traits using conventional methods is particularly challenging. Currently, image analysis methods based on advanced machine learning technologies allowed researchers to screen numerous samples at the same time considering multiple features, and to investigate root functions after the application of Si. These methods include root scanning, endoscopy, two-dimensional, and three-dimensional imaging, which can measure Si uptake, translocation and root morphological traits. Small variations in root morphology and architecture can reveal different positive impacts of Si on the root system of crops, with or without exposure to stressful environmental conditions. This review comprehensively illustrates the influences of Si on root morphology and root architecture in various crop species. Furthermore, it includes recommendations in regard to advanced methods and strategies to be employed to maintain sustainable plant growth rates and crop production in the currently predicted global climate change scenarios.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Garcia ◽  
M. Estrella Santamaria ◽  
Isabel Diaz ◽  
Manuel Martinez

AbstractThe success in the response of a plant to a pest depends on the regulatory networks that connect plant perception and plant response. Meta-analyses of transcriptomic responses are valuable tools to discover novel mechanisms in the plant/herbivore interplay. Considering the quantity and quality of available transcriptomic analyses, Arabidopsis thaliana was selected to test the ability of comprehensive meta-analyses to disentangle plant responses. The analysis of the transcriptomic data showed a general induction of biological processes commonly associated with the response to herbivory, like jasmonate signaling or glucosinolate biosynthesis. However, an uneven induction of many genes belonging to these biological categories was found, which was likely associated with the particularities of each specific Arabidopsis-herbivore interaction. A thorough analysis of the responses to the lepidopteran Pieris rapae and the spider mite Tetranychus urticae highlighted specificities in the perception and signaling pathways associated with the expression of receptors and transcription factors. This information was translated to a variable alteration of secondary metabolic pathways. In conclusion, transcriptomic meta-analysis has been revealed as a potent way to sort out relevant physiological processes in the plant response to herbivores. Translation of these transcriptomic-based analyses to crop species will permit a more appropriate design of biotechnological programs.


Author(s):  
Juan Alejandro Perdomo ◽  
Peter Buchner ◽  
Elizabete Carmo-Silva

AbstractDiurnal rhythms and light availability affect transcription–translation feedback loops that regulate the synthesis of photosynthetic proteins. The CO2-fixing enzyme Rubisco is the most abundant protein in the leaves of major crop species and its activity depends on interaction with the molecular chaperone Rubisco activase (Rca). In Triticum aestivum L. (wheat), three Rca isoforms are present that differ in their regulatory properties. Here, we tested the hypothesis that the relative abundance of the redox-sensitive and redox-insensitive Rca isoforms could be differentially regulated throughout light–dark diel cycle in wheat. While TaRca1-β expression was consistently negligible throughout the day, transcript levels of both TaRca2-β and TaRca2-α were higher and increased at the start of the day, with peak levels occurring at the middle of the photoperiod. Abundance of TaRca-β protein was maximal 1.5 h after the peak in TaRca2-β expression, but the abundance of TaRca-α remained constant during the entire photoperiod. The redox-sensitive TaRca-α isoform was less abundant, representing 85% of the redox-insensitive TaRca-β at the transcript level and 12.5% at the protein level. Expression of Rubisco large and small subunit genes did not show a consistent pattern throughout the diel cycle, but the abundance of Rubisco decreased by up to 20% during the dark period in fully expanded wheat leaves. These results, combined with a lack of correlation between transcript and protein abundance for both Rca isoforms and Rubisco throughout the entire diel cycle, suggest that the abundance of these photosynthetic enzymes is post-transcriptionally regulated.


Sign in / Sign up

Export Citation Format

Share Document