Technological and technical problems of copper production from chalcosine concentrates in a flash furnace

Author(s):  
J. Czernecki ◽  
S. Sobierajski ◽  
Z. Smieszek
Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 371
Author(s):  
Michael Caplan ◽  
Joseph Trouba ◽  
Corby Anderson ◽  
Shijie Wang

Flash furnace electrostatic precipitator dust (FF-ESP dust) is a recycle stream in some primary copper production facilities. This dust contains high amounts of copper. In some cases, the FF-ESP dust contains elevated levels of bismuth and arsenic, both of which cause problems during the electrorefining stages of copper production. Because of this, methods for separation of copper from bismuth and arsenic in FF-ESP dust are necessary. Hydrometallurgical leaching using a number of lixiviants, including sulfuric acid, sulfurous acid, sodium hydroxide, and water, were explored. Pourbaix diagrams of copper, bismuth, and arsenic were used to determine sets of conditions which would thermodynamically separate copper from bismuth and arsenic. The data indicate that water provides the best overall separation between copper and both bismuth and arsenic. Sodium hydroxide provided a separation between copper and arsenic. Sulfurous acid provided a separation between copper and bismuth. Sulfuric acid did not provide any separations between copper and bismuth or copper and arsenic.


2017 ◽  
Vol 17 (3) ◽  
pp. 191-195 ◽  
Author(s):  
M. Holtzer ◽  
A. Bydałek ◽  
W. Wołczyński ◽  
A. Kmita

AbstractThere are two methods to produce primary copper: hydrometallurgical and pyrometallurgical. Copper concentrates, from which copper matte is melted, constitute the charge at melting primary copper in the pyrometallurgical process. This process consists of a few stages, of which the basic ones are roasting and smelting. Smelting process may be bath and flash. Slag from copper production, on the end of process contain less 0,8%. It is treat as a waste or used other field, but only in a few friction. The slag amount for waste management or storage equaled 11 741 – 16 011 million tons in 2011. This is a serious ecological problem. The following slags were investigated: slag originated from the primary copper production process in the flash furnace of the Outtokumpuja Company in HM Głogów 2 (Sample S2): the same slag after the copper removal performed according the up to now technology (Sample S1): slag originated from the primary copper production process in the flash furnace of the Outtokumpuja Company in HM Głogów 2, after the copper removal performed according the new technology (Sample S3). In practice, all tested slags satisfy the allowance criteria of storing on the dumping grounds of wastes other than hazardous and neutral.


Author(s):  
Zhuo Chen ◽  
Peng Long ◽  
Zhiqiang Sun ◽  
Jun Zhou ◽  
Jiemin Zhou

The flash smelting process has been widely acknowledged as a successful modern pyro-metallurgical technology because of its good production flexibility. In past decades, great efforts have been put on the equipment improvement in order to achieve a highly intensive and efficient flash smelting process. However, along with the increasing of the productivity and the intensification of the process, technical problems such as the un-smelted materials accumulated in the settler and the dust generation ratio going higher are found occurring more frequently than before. All these problems however indicate degeneration in the performance of the central jet distributor (CJD) burner. A study was then made on the combustion and reaction processes in the flash furnace equipped with a CJD burner. A steady-state turbulent model was developed and a discrete phase model was included to investigate the velocity and temperature changes of both the gaseous and particle phases in the reaction shaft. The deviation of the numerical model is estimated to be less than 6%. The simulation results reveal a serious delay in the ignition of concentrate particles after they are fed into the furnace. Minor modification was also made by CFD computation, attempting to improve the particle ignition speed, but it was found not so effective. The main reason for the decreased smelting efficiency is found to be the poor mixing between the gaseous and particle phases under the intensified condition. These appeal for a great improvement in the performance of the CJD burner.


Author(s):  
R. Beeuwkes ◽  
A. Saubermann ◽  
P. Echlin ◽  
S. Churchill

Fifteen years ago, Hall described clearly the advantages of the thin section approach to biological x-ray microanalysis, and described clearly the ratio method for quantitive analysis in such preparations. In this now classic paper, he also made it clear that the ideal method of sample preparation would involve only freezing and sectioning at low temperature. Subsequently, Hall and his coworkers, as well as others, have applied themselves to the task of direct x-ray microanalysis of frozen sections. To achieve this goal, different methodological approachs have been developed as different groups sought solutions to a common group of technical problems. This report describes some of these problems and indicates the specific approaches and procedures developed by our group in order to overcome them. We acknowledge that the techniques evolved by our group are quite different from earlier approaches to cryomicrotomy and sample handling, hence the title of our paper. However, such departures from tradition have been based upon our attempt to apply basic physical principles to the processes involved. We feel we have demonstrated that such a break with tradition has valuable consequences.


Author(s):  
William H. Massover

Stereoscopic examination of thick sections of fixed and embedded biological tissues by high voltage electron microscopy has been shown to allow direct visualization of three-dimensional fine structure. The present report will consider the occurrence of some new technical problems in specimen preparation and Image interpretation that are not common during lower voltage studies of thin sections.Thick Sectioning and Tissue Coloration - Epon sections of 0.5 μm or more that are cut with glass knives do not have a uniform thickness as Judged by their interference colors; these colors change with time during their flotation on the knife bath, and again when drying onto the specimen support. Quoted thicknesses thus must be considered only as rough estimates unless measured in specific regions by other methods. Chloroform vapors do not always result in good spreading of thick sections; however, they will spread spontaneously to large degrees after resting on the flotation bath for several minutes. Ribbons of thick sections have been almost impossible to obtain.


2014 ◽  
Vol 1 (1) ◽  
pp. 111-114
Author(s):  
Lal Mohan Baral ◽  
Ramzan Muhammad ◽  
Claudiu Vasile Kifor ◽  
Ioan Bondrea

AbstractProblem-based learning as a teaching tool is now used globally in many areas of higher education. It provides an opportunity for students to explore technical problems from a system-level perspective and to be self-directed life-long learner which is mandatory for equipping engineering students with the skill and knowledge. This paper presents a case study illustrating the effectiveness of implemented Problem-based learning (PBL) during five semesters in the undergraduate programs of Textile Engineering in Ahsanullah University of Science and Technology (AUST). An assessment has been done on the basis of feedback from the students as well as their employers by conducting an empirical survey for the evaluation of PBL impact to enhance the student's competencies. The Evaluations indicate that students have achieved remarkable competencies through PBL practices which helped them to be competent in their professional life.


Sign in / Sign up

Export Citation Format

Share Document