scholarly journals Development of Machine Learning Models to Predict Probabilities and Types of Stroke at Prehospital Stage: the Japan Urgent Stroke Triage Score Using Machine Learning (JUST-ML)

Author(s):  
Kazutaka Uchida ◽  
Junichi Kouno ◽  
Shinichi Yoshimura ◽  
Norito Kinjo ◽  
Fumihiro Sakakibara ◽  
...  

AbstractIn conjunction with recent advancements in machine learning (ML), such technologies have been applied in various fields owing to their high predictive performance. We tried to develop prehospital stroke scale with ML. We conducted multi-center retrospective and prospective cohort study. The training cohort had eight centers in Japan from June 2015 to March 2018, and the test cohort had 13 centers from April 2019 to March 2020. We use the three different ML algorithms (logistic regression, random forests, XGBoost) to develop models. Main outcomes were large vessel occlusion (LVO), intracranial hemorrhage (ICH), subarachnoid hemorrhage (SAH), and cerebral infarction (CI) other than LVO. The predictive abilities were validated in the test cohort with accuracy, positive predictive value, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and F score. The training cohort included 3178 patients with 337 LVO, 487 ICH, 131 SAH, and 676 CI cases, and the test cohort included 3127 patients with 183 LVO, 372 ICH, 90 SAH, and 577 CI cases. The overall accuracies were 0.65, and the positive predictive values, sensitivities, specificities, AUCs, and F scores were stable in the test cohort. The classification abilities were also fair for all ML models. The AUCs for LVO of logistic regression, random forests, and XGBoost were 0.89, 0.89, and 0.88, respectively, in the test cohort, and these values were higher than the previously reported prediction models for LVO. The ML models developed to predict the probability and types of stroke at the prehospital stage had superior predictive abilities.

2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


2020 ◽  
Author(s):  
Jun Ke ◽  
Yiwei Chen ◽  
Xiaoping Wang ◽  
Zhiyong Wu ◽  
qiongyao Zhang ◽  
...  

Abstract BackgroundThe purpose of this study is to identify the risk factors of in-hospital mortality in patients with acute coronary syndrome (ACS) and to evaluate the performance of traditional regression and machine learning prediction models.MethodsThe data of ACS patients who entered the emergency department of Fujian Provincial Hospital from January 1, 2017 to March 31, 2020 for chest pain were retrospectively collected. The study used univariate and multivariate logistic regression analysis to identify risk factors for in-hospital mortality of ACS patients. The traditional regression and machine learning algorithms were used to develop predictive models, and the sensitivity, specificity, and receiver operating characteristic curve were used to evaluate the performance of each model.ResultsA total of 7810 ACS patients were included in the study, and the in-hospital mortality rate was 1.75%. Multivariate logistic regression analysis found that age and levels of D-dimer, cardiac troponin I, N-terminal pro-B-type natriuretic peptide (NT-proBNP), lactate dehydrogenase (LDH), high-density lipoprotein (HDL) cholesterol, and calcium channel blockers were independent predictors of in-hospital mortality. The study found that the area under the receiver operating characteristic curve of the models developed by logistic regression, gradient boosting decision tree (GBDT), random forest, and support vector machine (SVM) for predicting the risk of in-hospital mortality were 0.963, 0.960, 0.963, and 0.959, respectively. Feature importance evaluation found that NT-proBNP, LDH, and HDL cholesterol were top three variables that contribute the most to the prediction performance of the GBDT model and random forest model.ConclusionsThe predictive model developed using logistic regression, GBDT, random forest, and SVM algorithms can be used to predict the risk of in-hospital death of ACS patients. Based on our findings, we recommend that clinicians focus on monitoring the changes of NT-proBNP, LDH, and HDL cholesterol, as this may improve the clinical outcomes of ACS patients.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Begüm D. Topçuoğlu ◽  
Nicholas A. Lesniak ◽  
Mack T. Ruffin ◽  
Jenna Wiens ◽  
Patrick D. Schloss

ABSTRACT Machine learning (ML) modeling of the human microbiome has the potential to identify microbial biomarkers and aid in the diagnosis of many diseases such as inflammatory bowel disease, diabetes, and colorectal cancer. Progress has been made toward developing ML models that predict health outcomes using bacterial abundances, but inconsistent adoption of training and evaluation methods call the validity of these models into question. Furthermore, there appears to be a preference by many researchers to favor increased model complexity over interpretability. To overcome these challenges, we trained seven models that used fecal 16S rRNA sequence data to predict the presence of colonic screen relevant neoplasias (SRNs) (n = 490 patients, 261 controls and 229 cases). We developed a reusable open-source pipeline to train, validate, and interpret ML models. To show the effect of model selection, we assessed the predictive performance, interpretability, and training time of L2-regularized logistic regression, L1- and L2-regularized support vector machines (SVM) with linear and radial basis function kernels, a decision tree, random forest, and gradient boosted trees (XGBoost). The random forest model performed best at detecting SRNs with an area under the receiver operating characteristic curve (AUROC) of 0.695 (interquartile range [IQR], 0.651 to 0.739) but was slow to train (83.2 h) and not inherently interpretable. Despite its simplicity, L2-regularized logistic regression followed random forest in predictive performance with an AUROC of 0.680 (IQR, 0.625 to 0.735), trained faster (12 min), and was inherently interpretable. Our analysis highlights the importance of choosing an ML approach based on the goal of the study, as the choice will inform expectations of performance and interpretability. IMPORTANCE Diagnosing diseases using machine learning (ML) is rapidly being adopted in microbiome studies. However, the estimated performance associated with these models is likely overoptimistic. Moreover, there is a trend toward using black box models without a discussion of the difficulty of interpreting such models when trying to identify microbial biomarkers of disease. This work represents a step toward developing more-reproducible ML practices in applying ML to microbiome research. We implement a rigorous pipeline and emphasize the importance of selecting ML models that reflect the goal of the study. These concepts are not particular to the study of human health but can also be applied to environmental microbiology studies.


10.2196/15601 ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. e15601 ◽  
Author(s):  
Quazi Abidur Rahman ◽  
Tahir Janmohamed ◽  
Hance Clarke ◽  
Paul Ritvo ◽  
Jane Heffernan ◽  
...  

Background Pain volatility is an important factor in chronic pain experience and adaptation. Previously, we employed machine-learning methods to define and predict pain volatility levels from users of the Manage My Pain app. Reducing the number of features is important to help increase interpretability of such prediction models. Prediction results also need to be consolidated from multiple random subsamples to address the class imbalance issue. Objective This study aimed to: (1) increase the interpretability of previously developed pain volatility models by identifying the most important features that distinguish high from low volatility users; and (2) consolidate prediction results from models derived from multiple random subsamples while addressing the class imbalance issue. Methods A total of 132 features were extracted from the first month of app use to develop machine learning–based models for predicting pain volatility at the sixth month of app use. Three feature selection methods were applied to identify features that were significantly better predictors than other members of the large features set used for developing the prediction models: (1) Gini impurity criterion; (2) information gain criterion; and (3) Boruta. We then combined the three groups of important features determined by these algorithms to produce the final list of important features. Three machine learning methods were then employed to conduct prediction experiments using the selected important features: (1) logistic regression with ridge estimators; (2) logistic regression with least absolute shrinkage and selection operator; and (3) random forests. Multiple random under-sampling of the majority class was conducted to address class imbalance in the dataset. Subsequently, a majority voting approach was employed to consolidate prediction results from these multiple subsamples. The total number of users included in this study was 879, with a total number of 391,255 pain records. Results A threshold of 1.6 was established using clustering methods to differentiate between 2 classes: low volatility (n=694) and high volatility (n=185). The overall prediction accuracy is approximately 70% for both random forests and logistic regression models when using 132 features. Overall, 9 important features were identified using 3 feature selection methods. Of these 9 features, 2 are from the app use category and the other 7 are related to pain statistics. After consolidating models that were developed using random subsamples by majority voting, logistic regression models performed equally well using 132 or 9 features. Random forests performed better than logistic regression methods in predicting the high volatility class. The consolidated accuracy of random forests does not drop significantly (601/879; 68.4% vs 618/879; 70.3%) when only 9 important features are included in the prediction model. Conclusions We employed feature selection methods to identify important features in predicting future pain volatility. To address class imbalance, we consolidated models that were developed using multiple random subsamples by majority voting. Reducing the number of features did not result in a significant decrease in the consolidated prediction accuracy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shaowu Lin ◽  
Yafei Wu ◽  
Ya Fang

BackgroundDepression is highly prevalent and considered as the most common psychiatric disorder in home-based elderly, while study on forecasting depression risk in the elderly is still limited. In an endeavor to improve accuracy of depression forecasting, machine learning (ML) approaches have been recommended, in addition to the application of more traditional regression approaches.MethodsA prospective study was employed in home-based elderly Chinese, using baseline (2011) and follow-up (2013) data of the China Health and Retirement Longitudinal Study (CHARLS), a nationally representative cohort study. We compared four algorithms, including the regression-based models (logistic regression, lasso, ridge) and ML method (random forest). Model performance was assessed using repeated nested 10-fold cross-validation. As the main measure of predictive performance, we used the area under the receiver operating characteristic curve (AUC).ResultsThe mean AUCs of the four predictive models, logistic regression, lasso, ridge, and random forest, were 0.795, 0.794, 0.794, and 0.769, respectively. The main determinants were life satisfaction, self-reported memory, cognitive ability, ADL (activities of daily living) impairment, CESD-10 score. Life satisfaction increased the odds ratio of a future depression by 128.6% (logistic), 13.8% (lasso), and 13.2% (ridge), and cognitive ability was the most important predictor in random forest.ConclusionsThe three regression-based models and one ML algorithm performed equally well in differentiating between a future depression case and a non-depression case in home-based elderly. When choosing a model, different considerations, however, such as easy operating, might in some instances lead to one model being prioritized over another.


Author(s):  
Pier Paolo Mattogno ◽  
Valerio M. Caccavella ◽  
Martina Giordano ◽  
Quintino G. D'Alessandris ◽  
Sabrina Chiloiro ◽  
...  

Abstract Purpose Transsphenoidal surgery (TSS) for pituitary adenomas can be complicated by the occurrence of intraoperative cerebrospinal fluid (CSF) leakage (IOL). IOL significantly affects the course of surgery predisposing to the development of postoperative CSF leakage, a major source of morbidity and mortality in the postoperative period. The authors trained and internally validated the Random Forest (RF) prediction model to preoperatively identify patients at high risk for IOL. A locally interpretable model-agnostic explanations (LIME) algorithm is employed to elucidate the main drivers behind each machine learning (ML) model prediction. Methods The data of 210 patients who underwent TSS were collected; first, risk factors for IOL were identified via conventional statistical methods (multivariable logistic regression). Then, the authors trained, optimized, and audited a RF prediction model. Results IOL reported in 45 patients (21.5%). The recursive feature selection algorithm identified the following variables as the most significant determinants of IOL: Knosp's grade, sellar Hardy's grade, suprasellar Hardy's grade, tumor diameter (on X, Y, and Z axes), intercarotid distance, and secreting status (nonfunctioning and growth hormone [GH] secreting). Leveraging the predictive values of these variables, the RF prediction model achieved an area under the curve (AUC) of 0.83 (95% confidence interval [CI]: 0.78; 0.86), significantly outperforming the multivariable logistic regression model (AUC = 0.63). Conclusion A RF model that reliably identifies patients at risk for IOL was successfully trained and internally validated. ML-based prediction models can predict events that were previously judged nearly unpredictable; their deployment in clinical practice may result in improved patient care and reduced postoperative morbidity and healthcare costs.


Author(s):  
Janet L. Peacock ◽  
Philip J. Peacock

This chapter describes how statistical methods are used in diagnostic testing to obtain different measures of a test’s performance. It describes how to calculate sensitivity, specificity, and positive and negative predictive values, and shows the relevance of the pre- and post-test odds and the likelihood ratio in evaluating a test in clinical practice. The chapter also describes the receiver operating characteristic curve and shows how this links with logistic regression analysis. All methods are illustrated with examples.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254358
Author(s):  
Christopher Ryan King ◽  
Joanna Abraham ◽  
Bradley A. Fritz ◽  
Zhicheng Cui ◽  
William Galanter ◽  
...  

Current approaches to understanding medication ordering errors rely on relatively small manually captured error samples. These approaches are resource-intensive, do not scale for computerized provider order entry (CPOE) systems, and are likely to miss important risk factors associated with medication ordering errors. Previously, we described a dataset of CPOE-based medication voiding accompanied by univariable and multivariable regression analyses. However, these traditional techniques require expert guidance and may perform poorly compared to newer approaches. In this paper, we update that analysis using machine learning (ML) models to predict erroneous medication orders and identify its contributing factors. We retrieved patient demographics (race/ethnicity, sex, age), clinician characteristics, type of medication order (inpatient, prescription, home medication by history), and order content. We compared logistic regression, random forest, boosted decision trees, and artificial neural network models. Model performance was evaluated using area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). The dataset included 5,804,192 medication orders, of which 28,695 (0.5%) were voided. ML correctly classified voids at reasonable accuracy; with a positive predictive value of 10%, ~20% of errors were included. Gradient boosted decision trees achieved the highest AUROC (0.7968) and AUPRC (0.0647) among all models. Logistic regression had the poorest performance. Models identified predictive factors with high face validity (e.g., student orders), and a decision tree revealed interacting contexts with high rates of errors not identified by previous regression models. Prediction models using order-entry information offers promise for error surveillance, patient safety improvements, and targeted clinical review. The improved performance of models with complex interactions points to the importance of contextual medication ordering information for understanding contributors to medication errors.


2020 ◽  
Vol 163 (6) ◽  
pp. 1156-1165
Author(s):  
Juan Xiao ◽  
Qiang Xiao ◽  
Wei Cong ◽  
Ting Li ◽  
Shouluan Ding ◽  
...  

Objective To develop an easy-to-use nomogram for discrimination of malignant thyroid nodules and to compare diagnostic efficiency with the Kwak and American College of Radiology (ACR) Thyroid Imaging, Reporting and Data System (TI-RADS). Study Design Retrospective diagnostic study. Setting The Second Hospital of Shandong University. Subjects and Methods From March 2017 to April 2019, 792 patients with 1940 thyroid nodules were included into the training set; from May 2019 to December 2019, 174 patients with 389 nodules were included into the validation set. Multivariable logistic regression model was used to develop a nomogram for discriminating malignant nodules. To compare the diagnostic performance of the nomogram with the Kwak and ACR TI-RADS, the area under the receiver operating characteristic curve, sensitivity, specificity, and positive and negative predictive values were calculated. Results The nomogram consisted of 7 factors: composition, orientation, echogenicity, border, margin, extrathyroidal extension, and calcification. In the training set, for all nodules, the area under the curve (AUC) for the nomogram was 0.844, which was higher than the Kwak TI-RADS (0.826, P = .008) and the ACR TI-RADS (0.810, P < .001). For the 822 nodules >1 cm, the AUC of the nomogram was 0.891, which was higher than the Kwak TI-RADS (0.852, P < .001) and the ACR TI-RADS (0.853, P < .001). In the validation set, the AUC of the nomogram was also higher than the Kwak and ACR TI-RADS ( P < .05), each in the whole series and separately for nodules >1 or ≤1 cm. Conclusions When compared with the Kwak and ACR TI-RADS, the nomogram had a better performance in discriminating malignant thyroid nodules.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nita Vangeepuram ◽  
Bian Liu ◽  
Po-hsiang Chiu ◽  
Linhua Wang ◽  
Gaurav Pandey

AbstractPrediabetes and diabetes mellitus (preDM/DM) have become alarmingly prevalent among youth in recent years. However, simple questionnaire-based screening tools to reliably assess diabetes risk are only available for adults, not youth. As a first step in developing such a tool, we used a large-scale dataset from the National Health and Nutritional Examination Survey (NHANES) to examine the performance of a published pediatric clinical screening guideline in identifying youth with preDM/DM based on American Diabetes Association diagnostic biomarkers. We assessed the agreement between the clinical guideline and biomarker criteria using established evaluation measures (sensitivity, specificity, positive/negative predictive value, F-measure for the positive/negative preDM/DM classes, and Kappa). We also compared the performance of the guideline to those of machine learning (ML) based preDM/DM classifiers derived from the NHANES dataset. Approximately 29% of the 2858 youth in our study population had preDM/DM based on biomarker criteria. The clinical guideline had a sensitivity of 43.1% and specificity of 67.6%, positive/negative predictive values of 35.2%/74.5%, positive/negative F-measures of 38.8%/70.9%, and Kappa of 0.1 (95%CI: 0.06–0.14). The performance of the guideline varied across demographic subgroups. Some ML-based classifiers performed comparably to or better than the screening guideline, especially in identifying preDM/DM youth (p = 5.23 × 10−5).We demonstrated that a recommended pediatric clinical screening guideline did not perform well in identifying preDM/DM status among youth. Additional work is needed to develop a simple yet accurate screener for youth diabetes risk, potentially by using advanced ML methods and a wider range of clinical and behavioral health data.


Sign in / Sign up

Export Citation Format

Share Document