Aging Time on the Microstructure and Mechanical Properties of A356 Alloy by Semi-solid Processing

Author(s):  
Peng Qi ◽  
Bolong Li ◽  
Wenjian Lv ◽  
Shasha Dong ◽  
Tongbo Wang ◽  
...  
2011 ◽  
Vol 528 (6) ◽  
pp. 2495-2501 ◽  
Author(s):  
Roohollah Jamaati ◽  
Sajjad Amirkhanlou ◽  
Mohammad Reza Toroghinejad ◽  
Behzad Niroumand

2019 ◽  
Vol 285 ◽  
pp. 139-145
Author(s):  
Le Cheng ◽  
Hong Xing Lu ◽  
Qiang Zhu ◽  
Xiang Kai Zhang ◽  
Ai Di Shen ◽  
...  

Semi-solid squeeze casting (SS-SC) is a new processing technology which combines semi-solid processing (SSP) and squeeze casting (SC). In this process, semi-solid slurry fills mold by using its rheological property and solidifies under high pressure. It has several advantages, such as stable filling, small heat impact to the mold, low cost, high density and excellent mechanical properties of castings, which receives more and more attention. The microstructure of castings provided by SS-SC is quite different from that of casting provided by conventional SC in as-cast condition, which leads to differences in the evolution of microstructure and mechanical properties in heat treatment process. In this study, A356.2 aluminum alloys castings were provided by both SS-SC and conventional SC respectively. The evolution of microstructure and mechanical properties of castings during heat treatment was investigated to obtain the best mechanical properties of semi-solid squeeze castings. Keywords:Microstructure, Mechanical properties, Heat treatment, A356 alloy, Semi-Solid Squeeze Casting


2016 ◽  
Vol 879 ◽  
pp. 530-535
Author(s):  
Xiao Gang Fang ◽  
Shu Sen Wu ◽  
Shu Lin Lü

Mg-Zn-Y alloys containing a thermally stable icosahedral quasicrystal phase (I-phase) will have wide application future on condition that primary α-Mg dendrite and the I-phase can be refined during the casting process. In this research, the microstructure and mechanical properties of the rheo-squeeze casting (RSC) Mg-6Zn-1.4Y alloys have been investigated. The Mg alloy melt was exposed to ultrasonic vibration (USV) with different acoustic power densities from 0 W/mL to 9 W/mL, and then the slurry was formed by squeeze casting. The results show that good semi-solid slurry with fine and spherical α-Mg particles could be obtained with the acoustic power density of 6 W/mL, and the average grain size and shape factor of primary α-Mg were 32 μm and 0.76, respectively. Meanwhile the coarse eutectic I-phase (Mg3Zn6Y) was refined obviously and dispersed uniformly. Compared with the samples without USV, the tensile strength and elongation of the RSC casting samples with 6 W/mL acoustic power density were elevated by 10.6% and 55.5%, respectively.


2013 ◽  
Vol 750-752 ◽  
pp. 687-690 ◽  
Author(s):  
Su Zhang ◽  
Gang Yang ◽  
Jian Hong Yi ◽  
Hong Yan

Effects of the holding time and the stirring time on the microstructure and mechanical properties of A356 alloy modified by Sc are researched. According to the test results, most of the eutectic silicon phases have changed to the shape of creeping point, dispersed in the grain boundary of α (Al) phase while stirring 1 minute, in which case both the tensile strength and elongation reach the highest, resulting in the best modification effect. The results also indicate that microstructure and mechanical properties of the alloy reach are the best modification effect when the melt is held 15 minute. It can be known that the optimal stirring time is 1 minute and the optimal holding time is 15 minute in the experiment condition of the work.


2014 ◽  
Vol 496-500 ◽  
pp. 371-375 ◽  
Author(s):  
Apirit Petkhwan ◽  
Prapas Muangjunburee ◽  
Jessada Wannasin

In this research, the semi-solid state joining of SSM A356 aluminum alloy was investigated. The butt-joint of SSM A356 was heated by an induction heating coil to create a localized semisolid pool. Then a stirrer was applied into the joint seam in order to mix the weld metal. The accurate controlling of temperature during joining was measured. The effects of stirring rate on physical, macrostructure, microstructure and mechanical properties were studied. Experimental results showed that increase in stirring rates, the surface of the joint was smooth. The weld metal consisted of the globular microstructure and also voids. The density of weld metal zone increased by an appropriate stirring. The best tensile strength was achieved with 1750 rpm, 70 mm/min for 103.4 MPa.


2014 ◽  
Vol 217-218 ◽  
pp. 332-339 ◽  
Author(s):  
Xiao Kang Liang ◽  
Da Quan Li ◽  
Pascal Côté ◽  
Stephen P. Midson ◽  
Qiang Zhu

The spheroidal grains in billets used for semi-solid casting are generally manufactured by electromagnetic stirring (EMS) during the casting process. This method however, is not economically applicable for small quantities of the thixo billets. Swirled Enthalpy Equilibration Device (SEED) has been developed as a rheocasting process, and the SEED process is of interest for developing new thixo alloys, as well as for optimizing the thixocasting processes for high quality components. The objective of this paper is to compare the microstructure and mechanical properties of aluminum alloy 319s billets and castings produced using EMS and SEED feed materials. The experimental results show that for as-cast billets made from SEED process, a well-developed spheroidal grain structure is distributed throughout the cross-section of the billet, while for as-cast EMS billets, the grain structure is inhomogeneous, i.e., a dendritic structure was present adjacent to the surface of the billet, while a uniform, spheroidal structure was present at the centre. After the thixocasting process, however, the both SEED and EMS billets have well-developed, spheroidal grain structures. Mechanical properties of thixocast and T61 heat treated components are comparable for the both SEED and EMS billets.


Sign in / Sign up

Export Citation Format

Share Document