Algal Biofuels: An Economic and Effective Alternative of Fossil Fuels

Author(s):  
Nisha Bhardwaj ◽  
Komal Agrawal ◽  
Pradeep Verma
2021 ◽  
Vol 5 (S1) ◽  
pp. 1295-1301
Author(s):  
K. Ashok ◽  
M. Babu ◽  
S. Anandhi ◽  
G. Padmapriya ◽  
V. Jula

The large application potential of micro-algae in the clean energy, biopharmaceutical and nutraceutical industries have recently drawn a substantial world interest. Biofuels, bioactive pharmaceutical drugs and food additives are organic, natural and economical sources. As biofuels, they have a good cost, renewability or environmental replacement for liquid fossil fuels. Microalges provide productive biomass feedstock for biofuel as demand for biofuels rises worldwide. These resources may be processed into biodiesel with ample supplies of biomass in rural communities. The cultivation of genetically modified algae in recent years has been pursued to promote the marketing of algae. In particular, this would benefit society if linked with a successful policy on algal biofuels and other by-products in the government. In terms of survival of the world's current problems, Algal technologies are a transformative but complementary tool. Algal fuel marketing remains a bottleneck and a threat. It is technically possible to have a big output but it is not economic. This study therefore focuses principally on problems in commercial development of biological microalgae and potential strategies for overcoming this challenge.


2013 ◽  
Vol 79 (19) ◽  
pp. 6093-6101 ◽  
Author(s):  
Ryan J. Powell ◽  
Russell T. Hill

ABSTRACTAlgal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain,Bacillussp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including aNannochloropsissp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation ofNannochloropsis oceanicaIMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s.


2021 ◽  
Vol 257 ◽  
pp. 03008
Author(s):  
Muxin Hu ◽  
Dichen Zhao ◽  
Qiuchi Jin ◽  
Hanrui Li ◽  
Wenmin Wang

In recognition of the increasing demand of energy and the worsening environmental problems linked with fossil fuels usage, algal biofuel has been proposed as one of the alternative energy sources. It has become one of the hottest topics in renewable energy field in the new century, especially over the past decade. In this review, we summarized the characteristics of different types of algae biofuels. Besides, an in-depth evaluation of the systematic cultivation and practical application of algae have been conducted. Although algal biofuel has a great potential, its unacceptably high cost limits the large-scale industrialization. In order to resolve such restrictions, feasible methods of improving the large scale production and practical application of algal biofuels are proposed. Future efforts should be focused not only on the cost reduction and innovation techniques, but also towards high value by-products to maximize economic benefits. Our results are dedicated to provide valuable references for subsequent research and guidelines on algae biofuels field.


2020 ◽  
Vol 63 (4) ◽  
pp. 355-370 ◽  
Author(s):  
Guang Gao ◽  
James Grant Burgess ◽  
Min Wu ◽  
Shujun Wang ◽  
Kunshan Gao

AbstractThe rising global demand for energy and the decreasing stocks of fossil fuels, combined with environmental problems associated with greenhouse gas emissions, are driving research and development for alternative and renewable sources of energy. Algae have been gaining increasing attention as a potential source of bio-renewable energy because they grow rapidly, and farming them does not, generally, compete for agricultural land use. Previous studies of algal biofuels have focused on microalgae because of their fast growth rate and high lipid content. Here we analyze the multiple merits of biofuel production using macroalgae, with particular reference to their chemical composition, biomass and biofuel productivity, and cost-effectiveness. Compared to microalgae, macroalgae have lower growth rates and energy productivity but higher cost-effectiveness. A biomass productivity of over 73.5 t dry mass ha−1 year−1 with a methane yield of 285 m3 t−1 dry mass would make electricity production from macroalgae profitable, and this might be achieved using fast-growing macroalgae, such as Ulva. Taking into account the remediation of eutrophication and CO2, exploring macroalgae for a renewable bioenergy is of importance and feasible.


OALib ◽  
2014 ◽  
Vol 01 (03) ◽  
pp. 1-10
Author(s):  
Divya Srivastav ◽  
Ajay Pratap Singh ◽  
Ajay Kumar

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Lauro André Ribeiro ◽  
Patrícia Pereira da Silva

Innovative technologies and sources of energy must be developed to replace fossil fuels and contribute to the reductions of emissions of greenhouse gases associated with their use. In this perspective, algal biofuels are generating substantial awareness in many countries. As of today, it has been shown that it is scientifically and technically possible to derive the desired energy products from algae in the laboratory. The question lies, however, in whether it is a technology that merits the support and development to overcome existing scalability challenges and make it economically feasible. In this context, the overall purpose of this study is to provide an integrated assessment of the potential of microalgae as a source to produce biofuels, while confronting it with competing emerging biofuel technologies. It is intended to provide a comprehensive state of technology summary for producing fuels from algal feedstocks and to draw some insights upon the feasibility and technoeconomic challenges associated with scaling up of processes.


Endoscopy ◽  
2012 ◽  
Vol 44 (10) ◽  
Author(s):  
H Koh ◽  
S Magill ◽  
M Vella ◽  
A Renwick

2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2013 ◽  
pp. 109-128 ◽  
Author(s):  
C. Rühl

This paper presents the highlights of the third annual edition of the BP Energy Outlook, which sets out BP’s view of the most likely developments in global energy markets to 2030, based on up-to-date analysis and taking into account developments of the past year. The Outlook’s overall expectation for growth in global energy demand is to be 36% higher in 2030 than in 2011 and almost all the growth coming from emerging economies. It also reflects shifting expectations of the pattern of supply, with unconventional sources — shale gas and tight oil together with heavy oil and biofuels — playing an increasingly important role and, in particular, transforming the energy balance of the US. While the fuel mix is evolving, fossil fuels will continue to be dominant. Oil, gas and coal are expected to converge on market shares of around 26—28% each by 2030, and non-fossil fuels — nuclear, hydro and renewables — on a share of around 6—7% each. By 2030, increasing production and moderating demand will result in the US being 99% self-sufficient in net energy. Meanwhile, with continuing steep economic growth, major emerging economies such as China and India will become increasingly reliant on energy imports. These shifts will have major impacts on trade balances.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (6) ◽  
pp. 353-359 ◽  
Author(s):  
PETER W. HART ◽  
RICARDO B. SANTOS

Eucalyptus plantations have been used as a source of short fiber for papermaking for more than 40 years. The development in genetic improvement and clonal programs has produced improved density plantations that have resulted in fast growing, increased fiber volume eucalypts becoming the most widely used source of short fibers in the world. High productivity and short rotation times, along with the uniformity and improved wood quality of clonal plantations have attracted private industry investment in eucalypt plantations. Currently, only a handful of species or hybrids are used in plantation efforts. Many more species are being evaluated to either enhance fiber properties or expand the range of eucalypt plantations. Eucalyptus plantations are frequently planted on nonforested land and may be used, in part, as a means of conserving native forests while allowing the production of high quality fiber for economic uses. Finally, eucalypt plantations can provide significant carbon sinks, which may be used to help offset the carbon released from burning fossil fuels. The development and expansion of eucalypt plantations represents a substantial revolution in pulp and paper manufacturing.


Sign in / Sign up

Export Citation Format

Share Document