Microalgae as a renewable source of energy –processing and biofuel production a short review

2021 ◽  
Vol 5 (S1) ◽  
pp. 1295-1301
Author(s):  
K. Ashok ◽  
M. Babu ◽  
S. Anandhi ◽  
G. Padmapriya ◽  
V. Jula

The large application potential of micro-algae in the clean energy, biopharmaceutical and nutraceutical industries have recently drawn a substantial world interest. Biofuels, bioactive pharmaceutical drugs and food additives are organic, natural and economical sources. As biofuels, they have a good cost, renewability or environmental replacement for liquid fossil fuels. Microalges provide productive biomass feedstock for biofuel as demand for biofuels rises worldwide. These resources may be processed into biodiesel with ample supplies of biomass in rural communities. The cultivation of genetically modified algae in recent years has been pursued to promote the marketing of algae. In particular, this would benefit society if linked with a successful policy on algal biofuels and other by-products in the government. In terms of survival of the world's current problems, Algal technologies are a transformative but complementary tool. Algal fuel marketing remains a bottleneck and a threat. It is technically possible to have a big output but it is not economic. This study therefore focuses principally on problems in commercial development of biological microalgae and potential strategies for overcoming this challenge.

2012 ◽  
Vol 23 (4) ◽  
pp. 599-618 ◽  
Author(s):  
I.O. Ogundari ◽  
A.S. Momodu ◽  
A.J. Famurewa ◽  
J.B. Akarakiri ◽  
W.O. Siyanbola

Nigeria's biofuels policy advocates the adoption of cassava as feedstock for a 10%-biofuel substitution option in Nigerian transport fuel demand. This policy option is expected to address energy security and environmental consequences of using fossil fuels as the sole source of transport energy in the country. This paper appraised the technological and economic factors necessary for achieving Nigeria's cassava-based biofuel initiative at different substitution levels of 5, 10, and 15% by the Year 2020. A multi-stage energy forecasting and project analysis framework adapted from Coate's structure for technology assessment, as well as engineering economy methodology was used for the study. Technological analysis entailed determining petrol consumption projection, R&D capability, input feedstock requirements, environmental considerations and land requirement for feedstock crop production while engineering economy analysis evaluated the economic viability of the project. The results showed that petrol consumption in Nigeria and bioethanol substitution requirements were in the range of 18,285.7 – 19,142.84 thousand tons and 914.28 (5% low demand) – 2871.43 (15% high demand) thousand tons, respectively by 2020. Cassava feedstock and landmass requirements for bioethanol production were in the range of 4.64 – 14.53 million tons and 4.08 – 12.80 thousand sq. km, respectively while carbon dioxide savings were between 1.87 – 5.89 million tons by 2020. The recovery price for cassava bioethanol was estimated to be US$ 0.74/litre [Formula: see text]. Petrol being subsidised presently is harmful to the environment though it ‘oils’ the economy. Nigeria currently subsidizes petroleum products to the tune of 28% of 2011 budget. The government plans to remove this by 2012. Thus we conclude that weighing both economic and environmental benefits of bioethanol substitution in petrol consumption in Nigeria, the study showed that bioethanol production from cassava feedstock would be both technically and economically viable, provided subsidy, which depends on political will on the side of the government, is introduced for the first ten years of its implementation.


2013 ◽  
Vol 79 (19) ◽  
pp. 6093-6101 ◽  
Author(s):  
Ryan J. Powell ◽  
Russell T. Hill

ABSTRACTAlgal biofuels represent one of the most promising means of sustainably replacing liquid fuels. However, significant challenges remain before alga-based fuels become competitive with fossil fuels. One of the largest challenges is the ability to harvest the algae in an economical and low-energy manner. In this article, we describe the isolation of a bacterial strain,Bacillussp. strain RP1137, which can rapidly aggregate several algae that are candidates for biofuel production, including aNannochloropsissp. This bacterium aggregates algae in a pH-dependent and reversible manner and retains its aggregation ability after paraformaldehyde fixation, opening the possibility for reuse of the cells. The optimal ratio of bacteria to algae is described, as is the robustness of aggregation at different salinities and temperatures. Aggregation is dependent on the presence of calcium or magnesium ions. The efficiency of aggregation ofNannochloropsis oceanicaIMET1 is between 70 and 95% and is comparable to that obtained by other means of harvest; however, the rate of harvest is fast, with aggregates forming in 30 s.


Author(s):  
Chika Ezeanya ◽  
Abel Kennedy

The disappearance of Rwanda’s forests and attendant change in climatic conditions prompted the government to explore clean energy alternatives such as biogas. Unlike at any other time in Rwanda’s history, more and more Rwandans in rural areas are becoming owners of cattle because of the Government of Rwanda’s agricultural direct assistance and poverty reduction programme known as Girinka. This chapter focuses on the various strategies employed by the government of Rwanda in achieving increased biogas use among the rural poor Girinka beneficiaries who use cow dung for their domestic biogas plants. Conditions necessary for successful implementation of clean energy pro-poor reforms in rural communities are explored.


2012 ◽  
Vol 52 (1) ◽  
pp. 195
Author(s):  
Doug Young

The Clean Energy Act (CEA) and its related legislation received royal assent on 18 November 2011, ushering in a new era for the Australian industry, and for those who deal with it. Building on the 2007 National Greenhouse and Energy Reporting Scheme (NGERS), which mandates the measurement and reporting of greenhouse gas emissions and electricity production and consumption, the CEA imposes direct obligations on: individual industrial operations (facilities) that emit more than 25,000 tonnes of carbon dioxide, or its other equivalent greenhouse gases, from particular sources, in a year; suppliers of natural gas (at the point of last supply before the gas is burnt or otherwise used), for the emissions that will be generated when the gas is burnt; and, operators of land-fill facilities, such as local councils. While the primary emissions targeted by the scheme are produced by burning fossil fuels, they also include emissions such as the methane released when coal is mined. The obligations include the option of surrendering carbon units for each tonne of emissions, however, if this optional step is not performed, the mandatory payment of a tax, which far exceeds the cost of a unit, is enforced. The Australian Government will sell carbon units at a fixed price for the first three years, starting at $23, after which units will be auctioned for between $15 and the expected international unit price, plus $20. The supply of domestic units will be unlimited for the three fixed price years, but will be subject to a reducing cap in following years, consistent with the Government policy of reducing Australia’s emissions. The Government has created a monopoly for the supply of units for the first three years by prohibiting the use of overseas-sourced carbon units, and by only allowing 5% of the unit surrender requirements to be comprised of Australian generated carbon credits. Thereafter, for the first five of the flexible-charge years, only half the units can be sourced from overseas, with any apparent saving likely to be offset by the various taxes and charges applicable to the use of those units. Certain fuels will also be separately taxed. Entities, however, which acquire, manufacture or import fuels and would otherwise be entitled to a fuel tax credit, may be able to assume direct liability thus enabling them to acquire or manufacture fuel, free of the carbon tax component. Where the imposts will cause competitive disadvantage to industries that compete with entities from other countries that do not have similar imposts, some assistance is provided in the form of allocated units provided at no charge. Assistance is also available to coal-fired electricity generators, producers of liquefied natural gas, operators of gassy coal mines, and the steel industry (not discussed in this paper). This paper also explains, in detail, how liability is created, how to determine which entities are liable, the means of assigning liability to other entities, and the assistance available to various industries to help deal with the financial impact of the scheme on their operations. It also outlines the key concepts that underpin the scheme.


2020 ◽  
Vol 63 (4) ◽  
pp. 355-370 ◽  
Author(s):  
Guang Gao ◽  
James Grant Burgess ◽  
Min Wu ◽  
Shujun Wang ◽  
Kunshan Gao

AbstractThe rising global demand for energy and the decreasing stocks of fossil fuels, combined with environmental problems associated with greenhouse gas emissions, are driving research and development for alternative and renewable sources of energy. Algae have been gaining increasing attention as a potential source of bio-renewable energy because they grow rapidly, and farming them does not, generally, compete for agricultural land use. Previous studies of algal biofuels have focused on microalgae because of their fast growth rate and high lipid content. Here we analyze the multiple merits of biofuel production using macroalgae, with particular reference to their chemical composition, biomass and biofuel productivity, and cost-effectiveness. Compared to microalgae, macroalgae have lower growth rates and energy productivity but higher cost-effectiveness. A biomass productivity of over 73.5 t dry mass ha−1 year−1 with a methane yield of 285 m3 t−1 dry mass would make electricity production from macroalgae profitable, and this might be achieved using fast-growing macroalgae, such as Ulva. Taking into account the remediation of eutrophication and CO2, exploring macroalgae for a renewable bioenergy is of importance and feasible.


Author(s):  
Ítalo Pedro Santos de Oliveira ◽  
Livia Da Silva Oliveira ◽  
David Barbosa de Alencar ◽  
Manoel Henrique Reis Nascimento

The rational use of electricity is practically mandatory, due to the current moment in which the country crosses, mainly due to the reduced reservoir levels of the hydroelectric plants, and where there are high costs in the production of its fuel inputs. fossil fuels, and recent tariff adjustments that the government has been approving year after year, making conventional energy increasingly expensive in the country. Companies and households focus on looking for ways to dodge electricity inflation through clean and renewable energy sources, as is the case here, of photovoltaic solar energy. Aiming to supply about 70% of the electricity bill of a Company of the Manaus-AM Industrial Pole, this work proposes a 288 KWp photovoltaic solar system, consisting of 900 330 W photovoltaic panels, accompanied by 10 Inverters. 30 KW each, connected to the Amazonas Energia Distribution Network, featuring an On-grid solar system, and becoming the largest executed solar energy project in the Amazon and Northern Brazil. The implementation of the system seeks to make feasible and solve the high cost of the electric bill with the application of a solar system, and analyze its investment, financial return and clean energy generation for the next 25 years.


2021 ◽  
Vol 16 (2) ◽  
pp. 396-412
Author(s):  
Mustafa Jawad Nuhma ◽  
Hajar Alias ◽  
Ali A. Jazie ◽  
Muhammad Tahir

The continued burning of fossil fuels since the beginning of the last century led to higher emissions of greenhouse gases and thus leads to global warming. Microalgae are one of the most important sources of green hydrocarbons because this type of algae has a high percentage of lipids and has rapid growth, consumes the carbon dioxide in large quantities. Besides, the cultivation of these types of algae does not require arable land. This review aims to explain the suitability of microalgae as a biofuel source depending on the fat content, morphology, and other parameters and their effect on the conversion processes of microalgae oil into biofuels by different zeolite catalytic reactions. It also discusses in detail the major chemical processes that convert microalgae oil to chemical products. This review sheds light on one of the most important groups of microalgae (Chlorella vulgaris microalgae). This review includes a historical overview and a comprehensive description of the structure needed to develop this type of algae. The most important methods of production, their advantages and disadvantages are also deliberated in this work. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Author(s):  
Prasad M. Sawant

Faced with growing concerns about global warming and the depletion of fossil fuels, the international community has turned its attention to renewable energy research in the past two decades. In India and many other countries, electricity in rural areas is unreliable, inadequate, or without electricity. Remote area electrification is a major concern for the government of any developing nation. In the new microgrid model, renewable energy could be a profitable various to suburbanized power generation. Unlike households, non-agricultural enterprises that have not received due attention and political support have relatively high acceptance of Microgrid. The government has implemented various plans to realize the electrification of these areas by expanding the network, but so far, many areas have not been included in the proposed plan due to economic, environmental, and geographic reasons. In this article, we analyse the implementation and use of Microgrid in rural communities in villages that are powered by the grid. However, the current low electricity demand of non-agricultural enterprises in rural areas indicates that the increase in electricity demand and the increase in enterprise productivity require additional services and infrastructure


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2480
Author(s):  
Alejandro López-González ◽  
Bruno Domenech ◽  
Laia Ferrer-Martí

In the last ten years, there has been a progressive improvement in rural electrification indexes in developing countries, and renewable energies are progressively being integrated into electrification programs. In Cuba, the government has set a target of 700 MW in solar photovoltaic energy by 2030, including rural electrification and off-grid systems. Within this framework, 10,000 modular systems of 300 Wp are being installed in isolated communities. Nowadays, previously diesel-electrified settlements are migrating into renewable energy technologies projects in rural Cuba. The objective of this research is to evaluate the sustainability of these changes in order to identify the implications for other developing countries, taking four different dimensions into account: environmental, technical, socioeconomic, and institutional. For this purpose, the rural communities of Yaguá (diesel-based) and Río Abajo (solar-based) in the province of Sancti Spiritus are visited and studied. Results show that the institutional dimension of sustainability is positive thanks to improvements in energy security and promotion of the Cuban national plan goals. Moreover, results confirm that the energy transition from diesel-based to solar PV is environmentally sustainable in Cuba, but improvements are still necessary in the power capacity of solar modules to strengthen the socioeconomic and technical dimensions.


2020 ◽  
Vol 3 (1) ◽  
pp. 112-125
Author(s):  
Hasjad Hasjad

Development of village fund management is very much needed by the community so that it can be enjoyed by all levels of society in the villages. The seriousness of the government in developing villages is evidenced by the start of allocation of the Village Fund budget for 2015. The allocation of the Village Fund is mandated by Law (Law) Number 6 of 2014 concerning Villages and Government Regulation (PP) Number 6 of 2014 concerning Village Funds Sourced from STATE BUDGET. The regulation explained that the administration of the village government adheres to the principle of decentralization and the task of assistance. The principle of decentralization raises village internal funding (Desa APBD), while the principle of co-administration provides an opportunity for Villages to obtain funding sources from the government above it (APBN, Provincial APBD, Regency / City APBD). This study aims to observe what the development of village funds looks like, how they are implemented and the impact of the use of village funds in supporting development activities and community empowerment. The research method used is a qualitative research method that relies on observing places, actors and activities in Konawe Selatan Regency, Southeast Sulawesi Province, which was chosen as a case study. Initial observations show that the Village Fund does not have significant results in improving the welfare of the community. These indications are evident in the welfare of the community which has not improved with the existence of the village fund. Therefore it is necessary to develop a good management of village funds to improve the welfare of rural communities, especially in Konawe Selatan District. The output to be achieved is the scientific publication with ISSN Online and the level of technological Readiness that will be achieved 1-3.


Sign in / Sign up

Export Citation Format

Share Document