Design Thinking Instructions and Cognitive Processes

Author(s):  
Apoorv Naresh Bhatt ◽  
Lavannya Suressh ◽  
Amaresh Chakrabarti
2020 ◽  
Vol 6 ◽  
Author(s):  
John S. Gero ◽  
Julie Milovanovic

This paper presents a framework for studying design thinking. Three paradigmatic approaches are described to measure design cognitive processes: design cognition, design physiology and design neurocognition. Specific tools and methods serve each paradigmatic approach. Design cognition is explored through protocol analysis, black-box experiments, surveys and interviews. Design physiology is measured with eye tracking, electrodermal activity, heart rate and emotion tracking. Design neurocognition is measured using electroencephalography, functional near infrared spectroscopy and functional magnetic resonance imaging. Illustrative examples are presented to describe the types of results each method provides about the characteristics of design thinking, such as design patterns, design reasoning, design creativity, design collaboration, the co-evolution of the problem solution space, or design analysis and evaluation. The triangulation of results from the three paradigmatic approaches to studying design thinking provides a synergistic foundation for the understanding of design cognitive processes. Results from such studies generate a source of feedback to designers, design educators and researchers in design science. New models, new tools and new research questions emerge from the integrated approach proposed and lay down future challenges in studying design thinking.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amir Emami ◽  
Mark D. Packard ◽  
Dianne H.B. Welsh

PurposeThe purpose of this article is to extend effectuation theory at the front end by building cognitive foundations for the effectual design process.Design/methodology/approachWe adopt an integrative conceptual approach drawing on design cognition theory to explain entrepreneurial cognition.FindingsWe find a significant gap in the entrepreneurial cognition literature with respect to effectuation processes. We thus integrate the Situated Function–Behavior–Structure framework from design theory to elaborate on the cognitive processes of effectuation, specifically with regard to the opportunity development process. This framework describes the cognitive subprocesses by which entrepreneurs means and ends are cyclically (re)formulated over time until a viable “opportunity” emerges, and the venture is formalized, or else, the entrepreneur abandons the venture and exits.”Practical implicationsUnravelling this entrepreneurial design process may facilitate more appropriate and effective design work by entrepreneurs, leading to more successful product designs. It also should facilitate the development of better design techniques and instruction.Originality/valueThis research contributes to new cognitive foundations for effectuation theory and entrepreneurial process research. It better explains how means are transformed into valuable goods over time through an iterative reconsideration of means-ends frameworks. This theoretical elaboration will expectedly facilitate additional research into the iterative cognitive processes of design and enable more formulaic design thinking.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2020 ◽  
Vol 43 ◽  
Author(s):  
Thibaud Gruber

Abstract The debate on cumulative technological culture (CTC) is dominated by social-learning discussions, at the expense of other cognitive processes, leading to flawed circular arguments. I welcome the authors' approach to decouple CTC from social-learning processes without minimizing their impact. Yet, this model will only be informative to understand the evolution of CTC if tested in other cultural species.


1999 ◽  
Vol 52 (4) ◽  
pp. 957-979 ◽  
Author(s):  
Yannick Blandin ◽  
Lena Lhuisset ◽  
Luc Proteau

2010 ◽  
Vol 24 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Oscar H. Hernández ◽  
Muriel Vogel-Sprott

A missing stimulus task requires an immediate response to the omission of a regular recurrent stimulus. The task evokes a subclass of event-related potential known as omitted stimulus potential (OSP), which reflects some cognitive processes such as expectancy. The behavioral response to a missing stimulus is referred to as omitted stimulus reaction time (RT). This total RT measure is known to include cognitive and motor components. The cognitive component (premotor RT) is measured by the time from the missing stimulus until the onset of motor action. The motor RT component is measured by the time from the onset of muscle action until the completion of the response. Previous research showed that RT is faster to auditory than to visual stimuli, and that the premotor of RT to a missing auditory stimulus is correlated with the duration of an OSP. Although this observation suggests that similar cognitive processes might underlie these two measures, no research has tested this possibility. If similar cognitive processes are involved in the premotor RT and OSP duration, these two measures should be correlated in visual and somatosensory modalities, and the premotor RT to missing auditory stimuli should be fastest. This hypothesis was tested in 17 young male volunteers who performed a missing stimulus task, who were presented with trains of auditory, visual, and somatosensory stimuli and the OSP and RT measures were recorded. The results showed that premotor RT and OSP duration were consistently related, and that both measures were shorter with respect to auditory stimuli than to visual or somatosensory stimuli. This provides the first evidence that the premotor RT is related to an attribute of the OSP in all three sensory modalities.


2002 ◽  
Vol 16 (3) ◽  
pp. 129-149 ◽  
Author(s):  
Boris Kotchoubey

Abstract Most cognitive psychophysiological studies assume (1) that there is a chain of (partially overlapping) cognitive processes (processing stages, mechanisms, operators) leading from stimulus to response, and (2) that components of event-related brain potentials (ERPs) may be regarded as manifestations of these processing stages. What is usually discussed is which particular processing mechanisms are related to some particular component, but not whether such a relationship exists at all. Alternatively, from the point of view of noncognitive (e. g., “naturalistic”) theories of perception ERP components might be conceived of as correlates of extraction of the information from the experimental environment. In a series of experiments, the author attempted to separate these two accounts, i. e., internal variables like mental operations or cognitive parameters versus external variables like information content of stimulation. Whenever this separation could be performed, the latter factor proved to significantly affect ERP amplitudes, whereas the former did not. These data indicate that ERPs cannot be unequivocally linked to processing mechanisms postulated by cognitive models of perception. Therefore, they cannot be regarded as support for these models.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2016 ◽  
Vol 37 (4) ◽  
pp. 239-249
Author(s):  
Xuezhu Ren ◽  
Tengfei Wang ◽  
Karl Schweizer ◽  
Jing Guo

Abstract. Although attention control accounts for a unique portion of the variance in working memory capacity (WMC), the way in which attention control contributes to WMC has not been thoroughly specified. The current work focused on fractionating attention control into distinctly different executive processes and examined to what extent key processes of attention control including updating, shifting, and prepotent response inhibition were related to WMC and whether these relations were different. A number of 216 university students completed experimental tasks of attention control and two measures of WMC. Latent variable analyses were employed for separating and modeling each process and their effects on WMC. The results showed that both the accuracy of updating and shifting were substantially related to WMC while the link from the accuracy of inhibition to WMC was insignificant; on the other hand, only the speed of shifting had a moderate effect on WMC while neither the speed of updating nor the speed of inhibition showed significant effect on WMC. The results suggest that these key processes of attention control exhibit differential effects on individual differences in WMC. The approach that combined experimental manipulations and statistical modeling constitutes a promising way of investigating cognitive processes.


Sign in / Sign up

Export Citation Format

Share Document