BGRIMM Wide-Size-Fraction Flotation Machine

Author(s):  
Zhengchang Shen
2010 ◽  
Vol 113-116 ◽  
pp. 1577-1580 ◽  
Author(s):  
Xia Hui Gui ◽  
Gan Chen ◽  
Jiong Tian Liu ◽  
Yi Jun Cao ◽  
Yong Tian Wang

As certain refractory molybdenum with degree high oxidation and high argillization, on the premise of molybdenum concntrate recovery rate, in order to increase tenor of molybdenum concntrate, we use cyclonic static micro-bubble flotation column as concentration equipment. We used two concentrate courses to replace flotation machine eight concentrate courses. It showed that, in the condition of same recovery rate, tenor of molybdenum concntrate was 26.16%, rising by 8%. Using processes of flotation machine eight concentrate courses - concentrate regrinding - flotation column two concentrate courses, tenor of molybdenum concntrate was 39.33% and the recovery rate was of 8%. The results showed that, by increasing the degree of monomer dissociation of molybdenum ores, cyclonic static micro-bubble flotation column has higher capability in recovering and selecting ores of -400 mm size fraction. The high argillization resulting from the regrinding and unsuppressed gangue minerals are the main factors affecting the tenor of ore concentrate.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (9) ◽  
pp. 17-23 ◽  
Author(s):  
ANNE RUTANEN ◽  
MARTTI TOIVAKKA

Coating color stability, as defined by changes in its solid particle fraction, is important for runnability, quality, and costs of a paper coating operation. This study sought to determine whether the size or density of particles is important in size segregation in a pigment coating process. We used a laboratory coater to study changes in coating color composition during coating operations. The results suggest that size segregation occurs for high and low density particles. Regardless of the particle density, the fine particle size fraction (<0.2 μm) was the most prone for depletion, causing an increase in the average size of the particles. Strong interactions between the fine particles and other components also were associated with a low depletion tendency of fine particles. A stable process and improved efficiency of fine particles and binders can be achieved by controlling the depletion of fine particles.


1984 ◽  
Vol 19 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Alena Mudroch

Abstract Surface sediment samples obtained at the offshore and nearshore area of Lake Erie were separated into eight different size fractions ranging from &lt;2 µm to 250 µm. The concentration of major elements (Si, Al, Ca, Mg, K, Na, Fe, Mn and P), metals (Zn, Cu, Cr, Ni, V, Co and Pb) and organic matter was determined together with the mineralogical composition and morphology of the particles in each size fraction. The distribution of the metals in the offshore sediment was bimodal with the majority of the metals divided between the 63 to 250 um size fraction which also contained the highest concentration of organic matter (about 20%) and the &lt;4 µm fraction containing up to 60% of clay minerals. However, the metals in the nearshore sediment were associated mainly with the clay minerals.


1989 ◽  
Vol 24 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Alena Mudroch ◽  
K. Hill

Abstract Sediment cores were collected in Lake St. Clair in 1985 and in the St. Clair River in 1986 to investigate the horizontal and vertical distribution and association of Hg in the sediments. A layer of recent sediment up to about 35 cm thick was differentiated by the geochemical composition and visual appearance from the underlying glacial-lacustrine deposits. The concentration of Hg in the surficial sediments in Lake St. Clair was lower in 1985 (&lt;0.025 to 1.200 µg/g) than that found in 1974 (&lt;0.20 to 3.00 µg/g). Up to 8.30 µg/g of Hg were found in the sediments collected from the nearshore area at Sarnia, Ontario, in the St. Clair River in 1986. The concentrations of Hg ranged from 5.05 to 16.00 µg/g in different sand-sized fractions (0.063 to 0.350 mm) of the sediment. The concentration of Hg was 17.80 µg/g in the silt-clay size fraction (&lt;0.063 mm). No relationship was found between the concentration of organic matter and Hg, and the concentration of silica and Hg in the St. Clair River sediments. The results indicated a relationship of Hg with particles of different mineralogical composition. Up to 3.72 µg/g Hg was found in the surface sediment in Chenal Ecarte. The greatest concentration of Hg (13.15 µg/g) existed in the 0.350 mm particle size fraction, which consisted mainly of small pieces of decaying wood. A good relationship was found between the concentration of Hg and organic matter in the sediment at this area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ataallah Bahrami ◽  
Fatemeh Kazemi ◽  
Mirsaleh Mirmohammadi ◽  
Yousef Ghorbani ◽  
Saghar Farajzadeh

AbstractGilsonite has a wide variety of applications in the industry, including the manufacture of electrodes, paints and resins, as well as the production of asphalt and roof-waterproofing material. Gilsonite ash is a determining parameter for its application in some industries (e.g., gilsonite with ash content < 5% used as an additive in drilling fluids, resins). Due to the shortage of high grade (low ash) gilsonite reserves, the aim of this study is to develop a processing flowsheet for the production of ultra-low-ash gilsonite (< 5%), based on process mineralogy studies and processing tests. For this purpose, mineralogical studies and flotation tests have been performed on a sample of gilsonite with an average ash content of 15%. According to mineralogical studies, carbonates and clay minerals are the main associated impurities (more than 90 vol.%). Furthermore, sulfur was observed in two forms of mineral (pyrite and marcasite) and organic in the structure of gilsonite. Most of these impurities are interlocked with gilsonite in size fractions smaller than 105 µm. The size fraction of + 105 − 420 µm has a higher pure gilsonite (approximately 90%) than other size fractions. By specifying the gangue minerals with gilsonite and the manner and extent of their interlocking with gilsonite, + 75 − 420 µm size fraction selected to perform flotation tests. Flotation tests were performed using different reagents including collector (Gas oil, Kerosene and Pine oil), frother (MIBC) and depressant (sodium silicate, tannic acid, sulfuric acid and sodium cyanide) in different dosages. Based on the results, the use of kerosene collector, MIBC frother and a mixture of sodium silicate, tannic acid, sulfuric acid and sodium cyanide depressant had the most favorable results in gilsonite flotation in the rougher stage. Cleaner and recleaner flotation stages for the rougher flotation concentrate resulted in a product with an ash content of 4.89%. Due to the interlocking of gilsonite with impurities in size fractions − 105 µm, it is better to re-grinding the concentrate of the rougher stage beforehand flotation in the cleaner and recleaner stages. Finally, based on the results of mineralogical studies and processing tests, a processing flowsheet including crushing and initial granulation of gilsonite, flotation in rougher, cleaner and recleaner stages has been proposed to produce gilsonite concentrate with < 5% ash content.


The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Piotr Kołaczek ◽  
Krzysztof Buczek ◽  
Włodzimierz Margielewski ◽  
Mariusz Gałka ◽  
Aleksandra Rycerz ◽  
...  

Mountain regions harbour high biodiversity; however, in numerous areas, they are strongly degraded by human activity. Our study reconstructs the development of the submontane forest belt (400 and 650 m a.s.l.) in the Beskid Wyspowy Mountains (Western Carpathians, Central Europe) affected by climate, humans, fire, and parasitic fungi during the Holocene. This forest belt is considered the most transformed by the human in the Carpathian region. Our multi-proxy study included analyses of pollen, non-pollen palynomorphs (NPPs), plant macrofossils, micro- and macrocharcoal (size fraction >100 µm, analysed in contiguous sampling), geochemical, and sedimentological markers. The results revealed that Picea abies dominated on the fen subjected to study at ca. 8510–5010 cal. BP. Tilia cordata was a substantial component of the submontane forest between ca. 8510 and 2970 cal. BP and it survived a probable Kretzschmaria deusta outbreak, as well as a period of increased fire activity (ca. 6000 cal. BP). The final retreat of forests with a substantial contribution of Tilia was induced by the expansion of Abies alba, Fagus sylvatica, and partly Carpinus betulus and was preceded by the period of increased fire activity and erosion. From ca. 900 cal. BP human-induced deforestations and agricultural and pastoral activity increased. The modern presence of woodlands with Pinus sylvestris and Larix decidua, in the submontane zone in the Beskid Wyspowy Mountains, is a result of sub-recent anthropogenic afforestation on overgrazed areas. The example of the Zbludza site reveals that changes related to fire and pathogen infections, if they have low magnitudes and new competitive taxa are absent, may be reversible in a forest composed of fire-intolerant tree taxa as Tilia. Nonetheless, the widespread submontane ecosystem degradation and the introduction of alien species hamper the regeneration of forest vegetation typical of the submontane zone.


2019 ◽  
Vol 116 (3) ◽  
pp. 324 ◽  
Author(s):  
Kuranga Ibrahim Ayinla ◽  
Alafara Abdullahi Baba ◽  
Bankim Chandra Tripathy ◽  
Malay Kumar Ghosh ◽  
Rajan Kumar Dwari ◽  
...  

This study, focused on the beneficiation of a Nigerian complex chromite ore sourced from Tunga-Kaduka, Anka Local Government of Zamfara State, Nigeria, assaying 45.85% Cr2O4 and 54.15% mineral impurities, was enriched concurrently through sink floatation and magnetic separation techniques. The chromite ore initially analyzed to contain silicate impurities was found not suitable for metallurgical purposes. Thus, enrichment was examined through gravity separation studies using organic liquid with different specific gravities at 2.8, 3.3, and 4.0. The separation of chromite ore with lowest particle size fraction was done using Mozley mineral separator followed by the magnetic separation of the sink product by magnetic separator. The results obtained revealed about 77% of the total material containing 300 μm particle size, 52% ˂ 212 μm and 17% below 75 μm. Subsequent analysis of the beneficiated ore was carried out by wet chemical analysis and atomic absorption spectrophotometer. The results showed that Cr2O4 content increased to 78.34% from initial 45.83% with maximum Cr:Fe ratio of 3.2:1, representing 84.27% of chromium metal present in the ore. The enrichment of Cr2O4 obtained in this study could be found metallurgically applicable in the electro-deposition and ferro-chromium alloy production practices.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2138
Author(s):  
Anna K. Zykova ◽  
Petr V. Pantyukhov ◽  
Elena E. Mastalygina ◽  
Christian Chaverri-Ramos ◽  
Svetlana G. Nikolaeva ◽  
...  

The purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied. The developed composite films were characterized by satisfactory mechanical properties that allows the use of these materials for various applications. The biodegradability was evaluated in soil across three environments: laboratory conditions, an open field in Russia, and an open field in Costa Rica. All the samples lost weight and tensile strength during biodegradation tests, which was associated with the physicochemical degradation of both the natural filler and the polymer matrix. The spectral density of the band at 1463 cm−1 related to CH2-groups in polyethylene chains decreased in the process of soil burial, which is evidence of polymer chain breakage with formation of CH3 end groups. The degradation rate of most biocomposites after 20 months of the soil assays was greatest in Costa Rica (20.8–30.9%), followed by laboratory conditions (16.0–23.3%), and lowest in Russia (13.2–22.0%). The biocomposites with flax straw were more prone to biodegradation than those with wood flour, which can be explained by the chemical composition of fillers and the shape of filler particles. As the size fraction of filler particles increased, the biodegradation rate increased. Large particles had higher bioavailability than small spherical ones, encapsulated by a polymer. The prepared biocomposites have potential as an ecofriendly replacement for traditional polyolefins, especially in warmer climates.


Author(s):  
JM. González de Aledo-Castillo ◽  
S. Casanueva-Eliceiry ◽  
A. Soler-Perromat ◽  
D. Fuster ◽  
V. Pastor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document