Image Segmentation Module Development for Image Processing Learning Mobile Application

Author(s):  
S. Suhaila ◽  
Z. Y. Low ◽  
N. S. A. M. Taujuddin ◽  
R. Hazli ◽  
A. R. A. Ghani ◽  
...  
2014 ◽  
Vol 945-949 ◽  
pp. 1899-1902
Author(s):  
Yuan Yuan Fan ◽  
Wei Jiang Li ◽  
Feng Wang

Image segmentation is one of the basic problems of image processing, also is the first essential and fundamental issue in the solar image analysis and pattern recognition. This paper summarizes systematically on the image segmentation techniques in the solar image retrieval and the recent applications of image segmentation. Then the merits and demerits of each method are discussed in this paper, in this way we can combine some methods for image segmentation to reach the better effects in astronomy. Finally, according to the characteristics of the solar image itself, the more appropriate image segmentation methods are summed up, and some remarks on the prospects and development of image segmentation are presented.


2014 ◽  
Vol 496-500 ◽  
pp. 1834-1839
Author(s):  
Zhe Wang ◽  
Zhe Yan ◽  
Wei Tan

The near-band IR star images segmentation and recognition is key technique in day time star navigation. Due to the scene of near-band IR star imaging relative small and stellar with high star grade are limited. Pertinence and dynamic grey level threshold is necessary for image processing arithmetic. In order to enhance near-band IR star images segmentation and recognition in real-time, this paper present the process of partial histogram grey level threshold and improve for actually near-band IR star images with scene of no more than 1.5°×1.5°. It can reduce the calculation of near-band IR star images with adjustable threshold. And get rid of disturbance of small imaging square stars and noise points.


2014 ◽  
Vol 1 (2) ◽  
pp. 62-74 ◽  
Author(s):  
Payel Roy ◽  
Srijan Goswami ◽  
Sayan Chakraborty ◽  
Ahmad Taher Azar ◽  
Nilanjan Dey

In the domain of image processing, image segmentation has become one of the key application that is involved in most of the image based operations. Image segmentation refers to the process of breaking or partitioning any image. Although, like several image processing operations, image segmentation also faces some problems and issues when segmenting process becomes much more complicated. Previously lot of work has proved that Rough-set theory can be a useful method to overcome such complications during image segmentation. The Rough-set theory helps in very fast convergence and in avoiding local minima problem, thereby enhancing the performance of the EM, better result can be achieved. During rough-set-theoretic rule generation, each band is individualized by using the fuzzy-correlation-based gray-level thresholding. Therefore, use of Rough-set in image segmentation can be very useful. In this paper, a summary of all previous Rough-set based image segmentation methods are described in detail and also categorized accordingly. Rough-set based image segmentation provides a stable and better framework for image segmentation.


2021 ◽  
Vol 9 (3) ◽  
pp. 1-4
Author(s):  
Harshita Mishra ◽  
Anuradha Misra

In today’s world there is requirement of some techniques or methods that will be helpful for retrieval of the information from the images. Information those are important for finding solution to the problems in the present time are needed. In this review we will study the processing involved in the digitalization of the image. The set or proper array of the pixels that is also called as picture element is known as image. The positioning of these pixels is in matrix which is formed in columns and rows. The image undergoes the process of digitalization by which a digital image is formed. This process of digitalization is called digital image processing of the image (D.I.P). Electronic devices as such computers are used for the processing of the image into digital image. There are various techniques that are used for image segmentation process. In this review we will also try to understand the involvement of data mining for the extraction of the information from the image. The process of the identifying patterns in the large stored data with the help of statistic and mathematical algorithms is data mining. The pixel wise classification of the image segmentation uses data mining technique.


2018 ◽  
Vol 2 (1) ◽  
pp. 65-74
Author(s):  
Angga Wijaya Kusuma ◽  
Rossy Lydia Ellyana

In the development of an image not only as a documentation of events. One area that requires image processing is in the field of medicine is radiology. In radiology there is a medical image required by doctors and researchers to be processed for patient analysis. One of the important problems in image processing and pattern recognition is image segmentation into homogeneous areas. Segmentation in medical images will result in a medical image with area boundaries that are important information for analysis. This research applies k-means algorithm to MRI (Magnetic Resonance Imaging) image segmentation. The input image used is the image of MRI (brain and breast) has gone through the compression stage. This compression process is done with the aim of reducing memory usage but the critical information content of MRI image is still maintained. The image of the segmentation result is evaluated through performance test using GCE, VOI, MSE, and PSNR parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Guiling Sun ◽  
Xinglong Jia ◽  
Tianyu Geng

A new image recognition system based on multiple linear regression is proposed. Particularly, there are a number of innovations in image segmentation and recognition system. In image segmentation, an improved histogram segmentation method which can calculate threshold automatically and accurately is proposed. Meanwhile, the regional growth method and true color image processing are combined with this system to improve the accuracy and intelligence. While creating the recognition system, multiple linear regression and image feature extraction are utilized. After evaluating the results of different image training libraries, the system is proved to have effective image recognition ability, high precision, and reliability.


2021 ◽  
Vol 58 (8) ◽  
pp. 484-506
Author(s):  
U. P. Nayak ◽  
M. Müller ◽  
D. Britz ◽  
M.A. Guitar ◽  
F. Mücklich

Abstract Considering the dependance of materials’ properties on the microstructure, it is imperative to carry out a thorough microstructural characterization and analysis to bolster its development. This article is aimed to inform the users about the implementation of FIJI, an open source image processing software for image segmentation and quantitative microstructural analysis. The rapid advancement of computer technology in the past years has made it possible to swiftly segment and analyze hundreds of micrographs reducing hours’ worth of analysis time to a mere matter of minutes. This has led to the availability of several commercial image processing software programs primarily aimed at relatively inexperienced users. Despite the advantages like ‘one-click solutions’ offered by commercial software, the high licensing cost limits its widespread use in the metallographic community. Open-source platforms on the other hand, are free and easily available although rudimentary knowledge of the user-interface is a pre-requisite. In particular, the software FIJI has distinguished itself as a versatile tool, since it provides suitable extensions from image processing to segmentation to quantitative stereology and is continuously developed by a large user community. This article aims to introduce the FIJI program by familiarizing the user with its graphical user-interface and providing a sequential methodology to carry out image segmentation and quantitative microstructural analysis.


Author(s):  
José Rouillard

Designing and developing multimodal mobile applications is an important knowledge for researchers and industrial engineers. It is crucial to be able to rapidly develop prototypes for smartphones and tablet devices in order to test and evaluate mobile multimedia solutions, without necessarily being an expert in signal processing (image processing, objects recognition, sensors processing, etc.). This chapter proposes to follow the development process of a scientific experiment, in which a mobile application will be used to determine which modality (touch, voice, QRcode) is preferred for entering expiration dates of alimentary products. For the conception and the generation of the mobile application, the AppInventor framework is used. Benefits and limitations of this visual tool are presented across the “Pervasive Fridge” case study, and the obtained final prototype is discussed.


Sign in / Sign up

Export Citation Format

Share Document