Numerical Simulation of Flow Field and Separation Performance of a Two-Cone Hydrocyclone for Oil-Water Separation

Author(s):  
Chao Xie ◽  
Zhen Wu ◽  
Zhenjiang Zhao ◽  
Yaoyao Wei ◽  
Jianliang Xue ◽  
...  
2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4035-4042
Author(s):  
Yunfeng Li ◽  
Yuting Li

In order to reduce the frequency of marine environmental pollution accidents, marine oil-water separation numerical simulation method is developed. The oil-water separation hydrocyclone is used for emergency treatment to deal with the marine surface oil pollution, and the oil-water separation optimal control parameter calculation method based on the mathematical model of the flow field is used to simulate the oil-water separation performance of the device. The simulation results show that when the split ratio is 4.1%, the inlet pressure is 0.15MPa, the overflow pipe diameter is 3 mm, the oil droplet size is 101, and the large vertebral angle is 27, the hydrocyclone has good separation performance. Under these conditions, this method can be used as a reference method for dealing with oil spills in the ocean and has certain application value.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2288
Author(s):  
Jie Kou ◽  
Zhaoming Jiang ◽  
Yiying Cong

An innovative axial hydrocyclone separator was designed in which a guide vane was installed to replace a conventional tangential inlet, potentially aggravating inlet turbulence. The characteristics of velocity distribution, concentration distribution, and pressure distribution inside the separator were obtained through the numerical simulation of the turbulent flow of oil and water. The results showed that the flow field presented good symmetry, which eliminated the eccentric turbulence phenomenon in the conventional hydrocyclone separators and was beneficial for the oil–water separation.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


NANO ◽  
2021 ◽  
pp. 2150061
Author(s):  
Yuntian Wan ◽  
Xue Lin ◽  
Zhongshuai Chang ◽  
Xiaohui Dai ◽  
Jiangdong Dai

Currently, with the increasingly serious pollution problem of oily wastewater, it is urgent to develop advanced materials and methods. In this work, a Fe(III)-CMC@Ni(OH)2@Ni composite foam with superhydrophilic and underwater superoleophobicity was fabricated by an in situ growth of flower-like Ni(OH)2 nanoparticles and chelated assembly of Fe(III)-CMC nanohydrogel via a layer-by-layer self assembly using Fe[Formula: see text] ion and carboxymethyl cellulose (CMC). The composite foam could separate various oil/water mixtures and exhibited excellent efficiency over 99%. This foam possessed ultrahigh water flux (220000[Formula: see text]L m[Formula: see text] h[Formula: see text] and better resistant to penetration pressure (1.3[Formula: see text]kPa). After 30 cycles, the oil–water separation performance reduced only 0.5%, but the foam structure was still stable that guarantees a better lifetime. Besides, this composite foam showed anti-fouling, unique durability and excellent corrosion resistance performance. Taking into account all good properties, Fe(III)-CMC@Ni(OH)2@Ni composite foam was expected to be a potential candidate for responding to all kinds of complex oily wastewater conditions.


Author(s):  
Yu Li ◽  
Shengke Yang ◽  
Yangyang Chen ◽  
Dan Zhang

The hydrophobicity and anti-fouling properties of materials have important application value in industrial and agricultural production and people’s daily life. To study the relationship between the unit width L0 of the parabolic hydrophobic material and the hydrophobicity and anti-fouling properties, the rough surface structure of the parabolic with different widths was prepared by grinding with different SiC sandpapers, and further, to obtain hydrophobic materials through chemical oxidation and chemical etching, and modification with stearic acid (SA). The morphology, surface wetting and anti-fouling properties of the modified materials were characterized by SEM and contact angle measurement. The oil–water separation performance and self-cleaning performance of the materials were explored. The surface of the modified copper sheet forms a rough structure similar to a paraboloid. When ground with 1500 grit SiC sandpaper, it is more conducive to increase the hydrophobicity of the copper sheet surface and increase the contact angle of water droplets on the copper surface. Additionally, the self-cleaning and anti-fouling experiments showed that as L0 decreases, copper sheets were less able to stick to foreign things such as soil, and the better the self-cleaning and anti-fouling performance was. Based on the oil–water separation experiment of copper mesh, the lower L0 has a higher oil–water separation efficiency. The results showed that material with parabolic morphology has great self-cleaning, anti-fouling, and oil–water separation performance. The smaller the L0 was, the larger the contact angle and the better hydrophobic performance and self-cleaning performance were.


RSC Advances ◽  
2020 ◽  
Vol 10 (19) ◽  
pp. 11182-11187 ◽  
Author(s):  
Yong Li ◽  
Jiyang Xie ◽  
Changjin Guo ◽  
Jian Wang ◽  
Huan Liu ◽  
...  

An in situ “nucleation-cum-growth” solution chemistry strategy was performed to synthesize titanate hierarchical microspheres with superhydrophobic properties and oil–water separation performance.


Sign in / Sign up

Export Citation Format

Share Document