Differential responses of wood-rot fungi cellulases towards polyclonal antibodies against Trichoderma viride cellobiohydrolase I

1993 ◽  
Vol 39 (6) ◽  
pp. 788-794 ◽  
Author(s):  
Shoko Uemura ◽  
Mitsuro Ishihara ◽  
Jody Jellison
2004 ◽  
Vol 70 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Manabu Watanabe ◽  
Naomi Sumida ◽  
Koji Yanai ◽  
Takeshi Murakami

ABSTRACT We isolated a soybean saponin hydrolase from Neocosmospora vasinfecta var. vasinfecta PF1225, a filamentous fungus that can degrade soybean saponin and generate soyasapogenol B. This enzyme was found to be a monomer with a molecular mass of about 77 kDa and a glycoprotein. Nucleotide sequence analysis of the corresponding gene (sdn1) indicated that this enzyme consisted of 612 amino acids and had a molecular mass of 65,724 Da, in close agreement with that of the apoenzyme after the removal of carbohydrates. The sdn1 gene was successfully expressed in Trichoderma viride under the control of the cellobiohydrolase I gene promoter. The molecular mass of the recombinant enzyme, about 69 kDa, was smaller than that of the native enzyme due to fewer carbohydrate modifications. Examination of the degradation products obtained by treatment of soyasaponin I with the recombinant enzyme showed that the enzyme hydrolyzed soyasaponin I to soyasapogenol B and triose [α-l-rhamnopyranosyl (1→2)-β-d-galactopyranosyl (1→2)-d-glucuronopyranoside]. Also, when soyasaponin II and soyasaponin V, which are different from soyasaponin I only in constituent saccharides, were treated with the enzyme, the ratio of the reaction velocities for soyasaponin I, soyasaponin II, and soyasaponin V was 2,680:886:1. These results indicate that this enzyme recognizes the fine structure of the carbohydrate moiety of soyasaponin in its catalytic reaction. The amino acid sequence of this enzyme predicted from the DNA sequence shows no clear homology with those of any of the enzymes involved in the hydrolysis of carbohydrates.


2010 ◽  
Vol 42 (No. 2) ◽  
pp. 49-57 ◽  
Author(s):  
M. Karthikeyan ◽  
K. Radhika ◽  
R. Bhaskaran ◽  
S. Mathiyazhagan ◽  
R. Samiyappan ◽  
...  

Molecular and immunological methods were applied for detecting the <i>Ganoderma</i> disease of coconut. Polyclonal antibodies (PAbs) raised against basidiocarp protein of <i>Ganoderma</i> were used. For the polymerase chain reaction (PCR) tests, the primer generated from the internal transcribed spacer region one (ITS 1) of ribosomal DNA gene of <i>Ganoderma</i>, which produced a PCR product of 167 bp in size, was used. Apparently healthy palms in two coconut gardens were tested for <i>Ganoderma</i> disease by ELISA test using basidiocarp protein antiserum. Field trials were laid out in these early-diagnosed palms for the management of the disease. Based on the ELISA results, <i>Pseudomonas fluorescens</i> + <i>Trichoderma viride</i> with chitin amended treatments arrested the multiplication of the pathogen and within 6 months showed an optical density (OD) below the level of infected plants. Integrated Disease Management (IDM) and fungicide tridemorph treated palms showed OD values below infection level within 7 months, and <i>T. harzianum</i> and <i>P. fluorescens</i> + <i>T. viride</i> treated palms showed OD values below infection level in 8 months.


Author(s):  
Jorge Pecci Saavedra ◽  
Mark Connaughton ◽  
Juan José López ◽  
Alicia Brusco

The use of antibodies as labels for the localization of specific molecules in the nervous systan has been extensively applied in recent years. Both monoand polyclonal antibodies or antisera have been employed. The knowledge of the organization of neuronal connectivities, gliovascular relationships, glioneuronal relationships and other features of nerve tissue has greatly increased.A number of areas of the nervous systan have been analyzed in our laboratory, including the nuclei of the raphe system, the reticular formation, interpeduncular nucleus, substantia nigra, caudate nucleus, putamen, pallidum, spinal cord, pineal gland and others.From a technical point of view, a number of variables needed to be taken into account in order to obtain reliable and reproducible results. The design of the optimal conditions of tissue fixation, embedding, sectioning, dilution of antibodies, and adaptation of Sternberger PAP technique were sane of the parameters taken into account to optimize the results. It is critical that each step of the technique be defined for each particular case.


1987 ◽  
Vol 57 (01) ◽  
pp. 029-034 ◽  
Author(s):  
Göran Urdén ◽  
Joanna Chmielewska ◽  
Tomas Carlsson ◽  
Björn Wiman

SummaryPolyclonal antibodies have been raised against the inhibitor moiety in the purified complex between tissue plasminogen activator and its fast inhibitor (PA-inhibitor) in human plasma/ serum. A radioimmunoassay for quantitation of PA-inhibitor antigen was developed. The polyclonal antiserum and a previously described monoclonal antibody against the PA-inhibitor (14) have been used to study the immunological relationship between PA-inhibitors from plasma, serum, platelets, placenta extract and conditioned media from Hep G2 and HT 1080 cells. It was demonstrated that the ratio between PA-inhibitor activity and antigen varied considerably between the different sources. In the plasma samples studied, similar activity and antigen concentrations were found, suggesting that the PA-inhibitor in these samples mainly was in an active form. On the other hand the other sources seemed to contain variable amounts of inactive PA-inhibitor forms. Immunoadsorption experiments revealed that the PA-inhibitor (activity and antigen) from all the sources were specifically bound to the insolubilized antibodies (polyclonal and monoclonal). In no case, however, could active PA-inhibitor be eluted from the immunoadsorption columns. Also the competitive radioimmunoassays suggested that the PA-inhibitors from the different sources studied, were closely immunologically related.


1984 ◽  
Vol 52 (03) ◽  
pp. 250-252 ◽  
Author(s):  
Y Sultan ◽  
Ph Avner ◽  
P Maisonneuve ◽  
D Arnaud ◽  
Ch Jeanneau

SummaryTwo monoclonal antibodies raised against FVIII/von Willebrand protein were used in an immunoradiometric assay (IRMA) to measure this antigen in normal plasma and plasma of patients with different forms of von Willebrand’s disease. The first antibody, an IgG1 was used to coat polystyrene tubes, the second one, an IgG2a, iodinated and used in the second step. Both antibodies inhibit ristocetin induced platelet agglutination and react strongly with platelets, megacaryocytes and endothelial cells. The IRMA test using these antibodies showed greater sensitivity than that using rabbit polyclonal anti VIIIRAg antibodies. A good correlation between the two tests was nevertheless found when VIIIRAg was measured in the majority of patient’s plasma. However 5 patients from 3 different families showed more antigenic material in the rabbit antibody IRMA than in the monoclonal antibody IRMA. It is suggested therefore that the monoclonal antibodies identify part of the VIIIR:Ag molecule showing structural abnormalities in these vWd patients, these structural changes remaining undetected by the polyclonal antibodies.


2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody


2020 ◽  
Vol 82 (6) ◽  
pp. 54-63
Author(s):  
M.Ya. Vortman ◽  
◽  
Yu.B. Pysmenna ◽  
A.I. Chuenko ◽  
D.R. Abdulina ◽  
...  

Biocides are widely used in medicine and various industries to protect against a number of harmful microorganisms. Organic quaternary ammonium and guanidine-containing compounds, the biological action of which is based on membrane-toxic properties, are used as bactericidal preparations. The aim of this work was to study the bactericidal and fungicidal activities of the synthesized oligomeric alkylsubstituted guanidinium bromides with different radicals -C3H7, -C7H15, -C10H21, against different isolates of heterotrophic bacteria and microscopic fungi. Methods. The synthesis of alkyl-substituted guanidiniumcontaining oligomers was performed in two stages. In the first stage, alkyl-substituted guanidine was obtained by the reaction of guanidine, previously converted by alkali from the salt form to the base form by the base and alkyl bromides (Alk=-C3H7 (propyl), -C7H15 (heptyl), -C10H21 (decyl)) in methanol at a temperature of 50°C and a molar ratio of 1:1. The second carried out the reaction between aromatic oligoepoxide DER-331 and alkyl-substituted guanidine in methanol at a temperature of 50°C for 2–3 hours and a molar ratio of 1:2. Bacteria were grown on meat-peptone agar for 48 hours at a temperature of 28±2°С. Test cultures of micromycetes were cultured on agar beer wort (6°B), incubated for 14 days in a thermostat at a temperature of 28±2°C. Antimicrobial activity of newly synthesized alkyl-substituted guanidinium-containing oligomers was determined by standard disco-diffusion method (method of disks on agar) and fungicidal activity was determined by the method of holes in agar. Results. Oligomeric alkylsubstituted guanidinium bromides with different radicals composed -C3H7, -C7H15, -C10H21- synthesized by the reaction of guanidine alkyl bromides with aromatic oligoepoxydes. It was found that alkyl-substituted guanidinium-containing oligomers at a concentration of 1–3% inhibited the growth of Escherichia coli 475, Pseudomonas aeruginosa 465, Klebsiella pneumonia 479, Pseudomonas pseudoalcaligenes 109, Staphylococcus aureus 451, E. faecalis 422, Rhodococcus erythropolis 102, Bacillus subtilis 138 and most of the studied micromycetes – Aureobasidium pullulans F-41430, Paecilomyces variotii F-41432, Penicillium funiculosum F-41435, Penicillium ochrochloron F-41431, Scopulariopsis brevicaulis F-41434, Trichoderma viride F-41437, Candida albicans F-41441, Aspergillus flavus F-41442, Aspergillus niger F-41448, Penicillium sp. F-41447. Conclusions. Antimicrobial and fungicidal properties significantly depend on the length of the alkyl radical, with increasing of its length the diameter of the zone of bacterial and micromycetes growth retardation increases.10.15407/microbiolj82.06.054


Sign in / Sign up

Export Citation Format

Share Document