Effect of the abundance of three predominating copepod species on adequate sample volume and sample size in Bransfield Strait (Antarctic Peninsula) and waters north of the Weddell Sea

Polar Biology ◽  
1992 ◽  
Vol 12 (6-7) ◽  
Author(s):  
Ilppo Vuorinen ◽  
Erik Bonsdorff
2009 ◽  
Vol 6 (4) ◽  
pp. 7481-7515 ◽  
Author(s):  
M. V. Ardelan ◽  
O. Holm-Hansen ◽  
C. D. Hewes ◽  
C. S. Reiss ◽  
N. S. Silva ◽  
...  

Abstract. As part of the US-AMLR program that occupied 99 hydrographic stations in the South Shetland Islands-Antarctic Peninsula region in January–February of 2006, concentrations of dissolved iron (DFe) and total acid-leachable iron (TaLFe) were measured in the upper 150 m at 16 stations (both coastal and pelagic waters). The concentrations in the upper mixed layer (UML) of DFe and TaLFe were relatively high in Weddell Sea Shelf Waters (~0.6 nM and 15 nM, respectively) and lowest in Drake Passage waters (~0.2 nM and 0.9 nM, respectively). In the Bransfield Strait, representing a mixture of waters from the Weddell Sea and the Antarctic Circumpolar Current (ACC), concentrations of DFe were ~0.4 nM and of TaLFe ~1.7 nM. The highest concentrations of DFe and TaLFe in the UML were found at shallow coastal stations close to Livingston Island (~1.6 nM and 100 nM, respectively). The ratio of TaLFe:DFe varied with the distance to land: ~45 at the shallow coastal stations, ~15 in the high-salinity waters of Bransfield Strait, and ~4 in ACC waters. Concentrations of DFe increased slightly with depth in the water column, while that of TaLFe did not show any consistent trend with depth. Our data are consistent with the hypothesis that the relatively high rates of primary production known from the central regions of the Scotia Sea are partially sustained by natural iron enrichment resulting from a northeasterly flow of iron-rich coastal waters originating in the South Shetland Islands-Antarctic Peninsula region.


Author(s):  
Yu. V. Artamonov ◽  
E. A. Skripaleva ◽  
N. V. Nikolsky ◽  
◽  
◽  
...  

Based on the NOAA OISST reanalysis data, the spatial structure of the Weddell Sea Front in the climatic field of the sea surface temperature was analyzed and the seasonal variability of front’s characteristics was estimated. The spatial position of the frontal zone in the Weddell Sea was analyzed using distributions of the total horizontal temperature gradient. The characteristics of the front (the position of the gradients' extrema corresponding to the front, their magnitude and temperature on the front axis) were determined for each month on the profiles of meridional and zonal temperature gradients along meridians and parallels with a discreteness of 2.5° of longitude and 0.25° of latitude. It is shown that the interaction of Weddell Sea cold waters, which are transported by currents northward along the Antarctic Peninsula coasts, with the warmer waters of the eastern shelf of the Antarctic Peninsula and the Bransfield Strait surface water causes formation of two branches of the Weddell Sea Front. These branches round from a vast shelf at the Antarctic Peninsula tip and the Joinville archipelago the south and north and are traced further east along the boundaries of the bottom rise located approximately between 62.5S and 64.5S. To the south of the South Orkney Islands shelf, the two branches merge into one front, which follows to the east along the depth dump of the relative shallow between the South Orkney and South Sandwich Islands. In the seasonal cycle of the Weddell Sea Front intensity, a time lag was revealed of the front intensification period in the direction from west to east. In Bransfield Strait the front is most intense in February, between the Antarctic Peninsula tip and the South Orkney Islands – in March, east of the South Orkney Islands – in April. The branch of the Weddell Sea Front off the northeastern of the Antarctic Peninsula coasts intensifies in November – January, in the western part of the water area east of the James Ross and Snow Hill Islands – in January – February.


2010 ◽  
Vol 7 (1) ◽  
pp. 11-25 ◽  
Author(s):  
M. V. Ardelan ◽  
O. Holm-Hansen ◽  
C. D. Hewes ◽  
C. S. Reiss ◽  
N. S. Silva ◽  
...  

Abstract. As part of the US-AMLR program in January-February of 2006, 99 stations in the South Shetland Islands-Antarctic Peninsula region were sampled to understand the variability in hydrographic and biological properties related to the abundance and distribution of krill in this area. Concentrations of dissolved iron (DFe) and total acid-leachable iron (TaLFe) were measured in the upper 150 m at 16 of these stations (both coastal and pelagic waters) to better resolve the factors limiting primary production in this area and in downstream waters of the Scotia Sea. The concentrations of DFe and TaLFe in the upper mixed layer (UML) were relatively high in Weddell Sea Shelf Waters (~0.6 nM and 15 nM, respectively) and low in Drake Passage waters (~0.2 nM and 0.9 nM, respectively). In the Bransfield Strait, representing a mixture of waters from the Weddell Sea and the Antarctic Circumpolar Current (ACC), concentrations of DFe were ~0.4 nM and of TaLFe ~1.7 nM. The highest concentrations of DFe and TaLFe in the UML were found at shallow coastal stations close to Livingston Island (~1.6 nM and 100 nM, respectively). The ratio of TaLFe:DFe varied with the distance to land: ~45 at the shallow coastal stations, ~15 in the high-salinity waters of Bransfield Strait, and ~4 in ACC waters. Concentrations of DFe increased slightly with depth in the water column, while that of TaLFe did not show any consistent trend with depth. Our Fe data are discussed in regard to the hydrography and water circulation patterns in the study area, and with the hypothesis that the relatively high rates of primary production in the central regions of the Scotia Sea are partially sustained by natural iron enrichment resulting from a northeasterly flow of iron-rich coastal waters originating in the South Shetland Islands-Antarctic Peninsula region.


2008 ◽  
Vol 20 (2) ◽  
pp. 173-184 ◽  
Author(s):  
A. Maestro ◽  
J. López-Martínez ◽  
F. Bohoyo ◽  
M. Montes ◽  
F. Nozal ◽  
...  

AbstractPalaeostress inferred from brittle mesostructures in Seymour (Marambio) Island indicates a Cenozoic to Recent origin for an extensional stress field, with only local compressional stress states. Minimum horizontal stress (σ3) orientations are scattered about two main NE–SW and NW–SE modes suggesting that two stress sources have been responsible for the dominant minimum horizontal stress directions in the north-western Weddell Sea. Extensional structures within a broad-scale compressional stress field can be linked to both the decrease in relative stress magnitudes from active margins to intraplate regions and the rifting processes that occurred in the northern Weddell Sea. Stress states with NW–SE trending σ3are compatible with back-arc extension along the eastern Antarctic Peninsula. We interpret this as due to the opening of the Larsen Basin during upper Cretaceous to Eocene and to the spreading, from Pliocene to present, of the Bransfield Basin (western Antarctic Peninsula), both due to former Phoenix Plate subduction under the Antarctic Plate. NE–SW σ3orientations could be expressions of continental fragmentation of the northern Antarctic Peninsula controlling eastwards drifting of the South Orkney microcontinent and other submerged continental blocks of the southern Scotia Sea.


2021 ◽  
pp. M55-2018-37 ◽  
Author(s):  
Karsten M. Haase ◽  
Christoph Beier

AbstractYoung volcanic centres of the Bransfield Strait and James Ross Island occur along back-arc extensional structures parallel to the South Shetland island arc. Back-arc extension was caused by slab rollback at the South Shetland Trench during the past 4 myr. The variability of lava compositions along the Bransfield Strait results from varying degrees of mantle depletion and input of a slab component. The mantle underneath the Bransfield Strait is heterogeneous on a scale of approximately tens of kilometres with portions in the mantle wedge not affected by slab fluids. Lavas from James Ross Island east of the Antarctic Peninsula differ in composition from those of the Bransfield Strait in that they are alkaline without evidence for a component from a subducted slab. Alkaline lavas from the volcanic centres east of the Antarctic Peninsula imply variably low degrees of partial melting in the presence of residual garnet, suggesting variable thinning of the lithosphere by extension. Magmas in the Bransfield Strait form by relatively high degrees of melting in the shallow mantle, whereas the magmas some 150 km further east form by low degrees of melting deeper in the mantle, reflecting the diversity of mantle geodynamic processes related to subduction along the South Shetland Trench.


1974 ◽  
Vol 20 (4) ◽  
pp. 424-427 ◽  
Author(s):  
William E Neeley ◽  
Stephen C Wardlaw ◽  
Helen C Sing

Abstract Design features and performance of a miniaturized high-speed continuous-flow analyzer are described. Special emphasis is made in the design towards a system that is free from the operational and mechanical complexities found in most of today’s advanced systems. Depending on the particular analyses, sample size varies from 3 to 25 µl and reagent consumption is less than 180 µl per sample. Analyses are performed under steady-state conditions at sampling rates of 150 samples per hour with a 2:1 or 3:1 sample-to-wash ratio. The marked reduction in sample size makes the system ideal for microanalyses, especially in the pediatric clinical laboratory, in small animal research, and in any other cases where small sample volume is especially important.


1990 ◽  
Vol 14 ◽  
pp. 353-353
Author(s):  
D.A. Peel ◽  
R. Mulvaney

A stable isotope record extending back to 1795 is now available from Dolleman Island (70°35.2′S, 60°55.5′W), a small ice rise on the Weddell Sea coast of Antarctic Peninsula. An accurate chronology has been achieved by combined stratigraphic analysis of clear seasonal cycles in δ18O and excess SO4. Previous work (Peel and others, 1988) has shown that, since 1947, there is generally a satisfactory correlation between interannual variations in δ18O and air temperature (T) as recorded at weather stations in various parts of the region, suggesting that the derived δ18O/T ratio may be used to reconstruct air temperatures for the earlier period.Taken together with previously-reported data (Aristarain and others, 1986) for an ice core from James Ross Island it is now possible to propose a regional climatic signal for the Weddell Sea coastal sector of the region. The most striking feature is a broad maximum in δ18O for the mid-19th century, implying decadal average temperature at least as high as the present. This contrasts with available evidence from elsewhere in the southern hemisphere which suggest that this period was cooler than today. Tentative explanations for the anomaly are proposed based on evidence for a period (1974–80), where climatic shifts are clearly amplified in the isotopic records.


1988 ◽  
Vol 10 ◽  
pp. 121-125 ◽  
Author(s):  
Robert Mulvaney ◽  
David A. Peel

High-resolution anion profiles of Cl-, NO3- and SO4 2− are presented for two cores from the Antarctic Peninsula. A 47.2 m core from a site on the Palmer Land plateau (74°01’S, 70°38’W), spans the period 1942–80, and a 10.5 m core from Dolleman Island (70°35.2’S, 60°55.5’W), on the east coast of the peninsula, spans the period 1973–85. The seasonal pattern of deposition of these species has been determined by reference to the oxygen-isotope composition. Averaged over 38 years, the annual cycle of SO4 2− at Gomez shows a seasonal maximum during the austral summer, and minimum during the winter, whereas the Cl- cycle is more complex and may show the influence of equinoctial storms. The Dolleman core is significantly influenced by the proximity of the Weddell Sea, with a mean Cl- concentration five times greater than in the core from the plateau, and it shows a clear seasonal maximum in late-summer snowfall. There is no significant long-term trend in the 38 years’ data from the plateau site, suggesting that global pollution does not contribute significantly to the anion budget. Both anions and the cations Na+, K+ and H+ have been measured for more than a complete year of snowfall and the balance of ionic species is excellent.


1990 ◽  
Vol 14 ◽  
pp. 350
Author(s):  
R. Mulvaney ◽  
A.P. Reid ◽  
D A. Peel

A continuous, detailed, 200-years record of the anionic species, chloride, nitrate and sulphate, has been measured on an ice core from Dolleman Island (70°35.2′ S, 60°55.5′ W), Antarctic Peninsula. The site lies on the east coast of the Peninsula, and the chemistry of the core is dominated by the changing pattern of sea-ice distribution and storm activity in the Wed dell Sea. Strong annual cycles in chloride and non sea salt sulphate reflect the dominance of the seasonal cycle in sea-ice distribution in the Weddell Sea, observed in time series derived from satellite imagery since the early 1970s. However, in the case of chloride there is also an exceptionally strong interannual variability, which in many parts of the core dominates the seasonal cycle. Secular variations in the sea-ice extent appear to have a strong influence on the climate of the region and may play a major role in determining how long-term climate change in the Antarctic Peninsula relates to global climate change. The paper examines documented evidence for sea-ice extent in the Weddell Sea sector, and evaluates the usefulness of ice-core data for reconstructing this parameter in the earlier period.


Sign in / Sign up

Export Citation Format

Share Document