Zygotic induction of the rac locus can cause cell death in E. coli

1982 ◽  
Vol 187 (2) ◽  
pp. 231-235 ◽  
Author(s):  
Sheldon I. Feinstein ◽  
K. Brooks Low
Keyword(s):  
E Coli ◽  

2017 ◽  
Vol 4 (12) ◽  
pp. 2405-2417 ◽  
Author(s):  
Pritam Biswas ◽  
Rajdip Bandyopadhyaya

Schematic representation of E. coli cell death using the synergistic anti-bacterial activity of a mixture of Ag-AC and Cu-AC hybrids.



Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1242
Author(s):  
Gabriela N. Tenea ◽  
Pamela Hurtado ◽  
Clara Ortega

A novel Weissella cibaria strain UTNGt21O from the fruit of the Solanum quitoense (naranjilla) shrub produces a peptide that inhibits the growth of both Salmonella enterica subsp. enterica ATCC51741 and Escherichia coli ATCC25922 at different stages. A total of 31 contigs were assembled, with a total length of 1,924,087 bases, 20 contig hits match the core genome of different groups within Weissella, while for 11 contigs no match was found in the database. The GT content was 39.53% and the genome repeats sequences constitute around 186,760 bases of the assembly. The UTNGt21O matches the W. cibaria genome with 83% identity and no gaps (0). The sequencing data were deposited in the NCBI Database (BioProject accessions: PRJNA639289). The antibacterial activity and interaction mechanism of the peptide UTNGt21O on target bacteria were investigated by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with different concentrations (1×, 1.5× and 2× MIC) of the peptide applied alone or in combination with chelating agent ethylenediaminetetraacetic acid (EDTA) at 20 mM. The results indicated a bacteriolytic effect at both early and late target growth at 3 h of incubation and total cell death at 6 h when EDTA was co-inoculated with the peptide. Based on BAGEL 4 (Bacteriocin Genome Mining Tool) a putative bacteriocin having 33.4% sequence similarity to enterolysin A was detected within the contig 12. The interaction between the peptide UTNGt21O and the target strains caused permeability in a dose-, time- response manner, with Salmonella (3200 AU/mL) more susceptible than E. coli (6400 AU/mL). The results indicated that UTNGt21O may damage the integrity of the cell target, leading to release of cytoplasmic components followed by cell death. Differences in membrane shape changes in target cells treated with different doses of peptide were observed by transmission electronic microscopy (TEM). Spheroplasts with spherical shapes were detected in Salmonella while larger shaped spheroplasts with thicker and deformed membranes along with filamentous cells were observed in E. coli upon the treatment with the UTNGt21O peptide. These results indicate the promising potential of the putative bacteriocin released by the novel W. cibaria strain UTNGt21O to be further tested as a new antimicrobial substance.



mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Sathish Kumar ◽  
Ilana Kolodkin-Gal ◽  
Hanna Engelberg-Kulka

ABSTRACTEscherichia colimazEFis a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity ofE. colitoxin MazF. Here we discovered thatE. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacteriumBacillus subtilisand the Gram-negative bacteriumPseudomonas aeruginosa. In the SN ofB. subtilis, we found one EDF, the hexapeptide RGQQNE, calledBsEDF. In the SN ofP. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, calledPaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, calledPaEDF-2, and APKLSDGAAAGYVTKA, calledPaEDF-3. When added to a dilutedE. colicultures, each of these peptides acted as an interspecies EDF that triggeredmazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity ofE. coliMazF, probably by interacting with different sites onE. coliMazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells.IMPORTANCEBacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we addedE. coliEDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria,Bacillus subtilisandPseudomonas aeruginosa. Thus, in this study we established a “new family of EDFs.” This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell.



2004 ◽  
Vol 186 (24) ◽  
pp. 8295-8300 ◽  
Author(s):  
Shahar Amitai ◽  
Yussuf Yassin ◽  
Hanna Engelberg-Kulka

ABSTRACT mazEF is a stress-induced toxin-antitoxin module, located on the chromosome of Escherichia coli, that we have previously described to be responsible for programmed cell death in E. coli. mazF specifies a stable toxin, and mazE specifies a labile antitoxin. Recently, it was reported that inhibition of translation and cell growth by ectopic overexpression of the toxin MazF can be reversed by the action of the antitoxin MazE ectopically overexpressed at a later time. Based on these results, it was suggested that rather than inducing cell death, mazF induces a state of reversible bacteriostasis (K. Pederson, S. K. Christensen, and K. Gerdes, Mol. Microbiol. 45:501-510, 2002). Using a similar ectopic overexpression system, we show here that overexpression of MazE could reverse MazF lethality only over a short window of time. The size of that window depended on the nature of the medium in which MazF was overexpressed. Thus, we found “a point of no return,” which occurred sooner in minimal M9 medium than it did in the rich Luria-Bertani medium. We also describe a state in which the effect of MazF on translation could be separated from its effect on cell death: MazE overproduction could completely reverse the inhibitory effect of MazF on translation, while not affecting the bacteriocidic effect of MazF at all. Our results reported here support our view that the mazEF module mediates cell death and is part of a programmed cell death network.



2006 ◽  
Vol 188 (9) ◽  
pp. 3420-3423 ◽  
Author(s):  
Ilana Kolodkin-Gal ◽  
Hanna Engelberg-Kulka

ABSTRACT mazEF is a stress-induced toxin-antitoxin module located on the chromosomes of many bacteria. Here we induced Escherichia coli chromosomal mazEF by various stressful conditions. We found an irreversible loss of viability, which is the basic characteristic of cell death. These results further support our previous conclusion that E. coli mazEF mediation of cell death is not a passive process, but an active and genetically “programmed” death response.



2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ting Song ◽  
Kaiwu Li ◽  
Wei Zhou ◽  
Jing Zhou ◽  
Yuan Jin ◽  
...  

EnterohemorrhagicE. coli(EHEC) is a highly pathogenic bacterial strain capable of inducing severe gastrointestinal disease. Here, we show that EHEC uses the T3SS effector NleF to counteract the host inflammatory response by dampening caspase-4-mediated inflammatory epithelial cell death and by preventing the production of IL-1β. The other two inflammatory caspases, caspase-1 and caspase-5, are not involved in EHEC ΔnleF-induced inflammatory cell death. We found that NleF not only interrupted the heterodimerization of caspase-4-p19 and caspase-4-p10, but also inhibited the interaction of caspase-1 and caspase-4. The last four amino acids of the NleF carboxy terminus are essential in inhibiting caspase-4-dependent inflammatory cell death.





2006 ◽  
Vol 19 (10) ◽  
pp. 1092-1102 ◽  
Author(s):  
Jong Hyun Ham ◽  
Doris R. Majerczak ◽  
Angel S. Arroyo-Rodriguez ◽  
David M. Mackey ◽  
David L. Coplin

The pathogenicity of Pantoea stewartii subsp. stewartii to sweet corn and maize requires a Hrp type III secretion system. In this study, we genetically and functionally characterized a disease-specific (Dsp) effector locus, composed of wtsE and wtsF, that is adjacent to the hrp gene cluster. WtsE, a member of the AvrE family of effector proteins, was essential for pathogenesis on corn and was complemented by DspA/E from Erwinia amylovora. An intact C-terminus of WtsE, which contained a putative endoplasmic reticulum membrane retention signal, was important for function of WtsE. Delivery of WtsE into sweet corn leaves by an Escherichia coli strain carrying the hrp cluster of Erwinia chrysanthemi caused water-soaking and necrosis. WtsE-induced cell death was not inhibited by cycloheximide treatment, unlike the hypersensitive response caused by a known Avr protein, AvrRxo1. WtsF, the putative chaperone of WtsE, was not required for secretion of WtsE from P. stewartii, and the virulence of wtsF mutants was reduced only at low inoculum concentrations. However, WtsF was required for full accumulation of WtsE within the bacteria at low temperatures. In contrast, WtsF was needed for efficient delivery of WtsE from E. coli via the Erwinia chrysanthemi Hrp system.



2004 ◽  
Vol 186 (7) ◽  
pp. 2147-2155 ◽  
Author(s):  
Bernard Strauss ◽  
Kemba Kelly ◽  
Toros Dincman ◽  
Damian Ekiert ◽  
Theresa Biesieda ◽  
...  

ABSTRACT Cells of the Escherichia coli dnaE(Ts) dnaE74 and dnaE486 mutants die after 4 h of incubation at 40°C in Luria-Bertani medium. Cell death is preceded by elongation, is inhibited by chloramphenicol, tetracycline, or rifampin, and is dependent on cell density. Cells survive at 40°C when they are incubated at a high population density or at a low density in conditioned medium, but they die when the medium is supplemented with glucose and amino acids. Deletion of recA or sulA has no effect. We isolated suppressors which survived for long periods at 40°C but did not form colonies. The suppressors protected against hydroxyurea-induced killing. Sequence and complementation analysis indicated that suppression was due to mutation in the cydA gene. The DNA content of dnaE mutants increased about eightfold in 4 h at 40°C, as did the DNA content of the suppressed strains. The amount of plasmid pBR322 in a dnaE74 strain increased about fourfold, as measured on gels, and the electrophoretic pattern appeared to be normal even though the viability of the parent cells decreased 2 logs. Transformation activity also increased. 4′,6′-Diamidino-2-phenylindole staining demonstrated that there were nucleoids distributed throughout the dnaE filaments formed at 40°C, indicating that there was segregation of the newly formed DNA. We concluded that the DNA synthesized was physiologically competent, particularly since the number of viable cells of the suppressed strain increased during the first few hours of incubation. These observations support the view that E. coli senses the rate of DNA synthesis and inhibits septation when the rate of DNA synthesis falls below a critical level relative to the level of RNA and protein synthesis.



2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Kritika Gupta ◽  
Arti Tripathi ◽  
Alishan Sahu ◽  
Raghavan Varadarajan

ABSTRACT One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain (ccd O157) and the ccd operon from the F plasmid (ccd F), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccd F and ccd O157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence. IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple antibiotic stress conditions. This has implications for generation of potential therapeutics that target these TA systems and has clinical significance because the presence of persisters in an antibiotic-treated population can lead to resuscitation of chronic infection and may contribute to failure of antibiotic treatment.



Sign in / Sign up

Export Citation Format

Share Document