High frequency transfer of species specific mitochondrial DNA sequences between members of the aspergillaceae

1981 ◽  
Vol 3 (3) ◽  
pp. 221-228 ◽  
Author(s):  
Alison J. Earl ◽  
Geoffrey Turner ◽  
James H. Croft ◽  
Richard B.G. Dales ◽  
Colin M. Lazarus ◽  
...  
2005 ◽  
Vol 68 (6) ◽  
pp. 1217-1221 ◽  
Author(s):  
PAVEL KRCMAR ◽  
EVA RENCOVA

A sensitive and rapid method for the quantitative detection of bovine-, ovine-, swine-, and chicken-specific mitochondrial DNA sequences based on real-time PCR has been developed. The specificity of the primers and probes for real-time PCR has been tested using DNA samples of other vertebrate species that may also be present in rendered products. The quantitative detection was performed with dual-labeled probes (TaqMan) using absolute quantification with external standards of single species meat-and-bone meals. This method facilitates the detection of 0.01% of the target species–derived material in concentrate feed mixtures and fish meals.


2007 ◽  
Vol 70 (12) ◽  
pp. 2900-2905 ◽  
Author(s):  
JOHANNA MURPHY ◽  
JENNIFER ARMOUR ◽  
BURTON W. BLAIS

A cloth-based hybridization array system (CHAS) previously developed for the detection of animal species for which prohibited materials have been specified (cattle, sheep, goat, elk, and deer) has been expanded to include the detection of animal species for which there are no prohibitions (pig and horse) in Canadian and American animal feeds. Animal species were identified by amplification of mitochondrial DNA sequences by PCR and subsequent hybridization of the amplicons with an array of species-specific oligonucleotide capture probes immobilized on a polyester cloth support, followed by an immunoenzymatic assay of the bound PCR products. The CHAS permitted sensitive and specific detection of meat meals from different animal species blended in a grain-based feed and should provide a useful adjunct to microscopic examination for the identification of prohibited materials in animal feeds.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Brenda Solórzano-García ◽  
Ella Vázquez-Domínguez ◽  
Gerardo Pérez-Ponce de León ◽  
Daniel Piñero

Abstract Background In parasitism arm race processes and red queen dynamics between host and parasites reciprocally mold many aspects of their genetics and evolution. We performed a parallel assessment of population genetics and demography of two species of pinworms with different degrees of host specificity (Trypanoxyuris multilabiatus, species-specific; and T. minutus, genus-specific) and their host, the mantled howler monkey (Alouatta palliata), based on mitochondrial DNA sequences and microsatellite loci (these only for the host). Given that pinworms and primates have a close co-evolutionary history, covariation in several genetic aspects of their populations is expected. Results Mitochondrial DNA revealed two genetic clusters (West and East) in both pinworm species and howler monkeys, although population structure and genetic differentiation were stronger in the host, while genetic diversity was higher in pinworms than howler populations. Co-divergence tests showed no congruence between host and parasite phylogenies; nonetheless, a significant correlation was found between both pinworms and A. palliata genetic pairwise distances suggesting that the parasites’ gene flow is mediated by the host dispersal. Moreover, the parasite most infective and the host most susceptible haplotypes were also the most frequent, whereas the less divergent haplotypes tended to be either more infective (for pinworms) or more susceptible (for howlers). Finally, a positive correlation was found between pairwise p-distance of host haplotypes and that of their associated pinworm haplotypes. Conclusion The genetic configuration of pinworm populations appears to be molded by their own demography and life history traits in conjunction with the biology and evolutionary history of their hosts, including host genetic variation, social interactions, dispersal and biogeography. Similarity in patterns of genetic structure, differentiation and diversity is higher between howler monkeys and T. multilabiatus in comparison with T. minutus, highlighting the role of host-specificity in coevolving processes. Trypanoxyuris minutus exhibits genetic specificity towards the most frequent host haplotype as well as geographic specificity. Results suggest signals of potential local adaptation in pinworms and further support the notion of correlated evolution between pinworms and their primate hosts.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.


Genome ◽  
2010 ◽  
Vol 53 (10) ◽  
pp. 769-777 ◽  
Author(s):  
Melanie Mehes-Smith ◽  
Paul Michael ◽  
Kabwe Nkongolo

Genome organization in the family Pinaceae is complex and largely unknown. The main purpose of the present study was to develop and physically map species-diagnostic and species-specific molecular markers in pine and spruce. Five RAPD (random amplified polymorphic DNA) and one ISSR (inter-simple sequence repeat) species-diagnostic or species-specific markers for Picea mariana , Picea rubens , Pinus strobus , or Pinus monticola were identified, cloned, and sequenced. In situ hybridization of these sequences to spruce and pine chromosomes showed the sequences to be present in high copy number and evenly distributed throughout the genome. The analysis of centromeric and telomeric regions revealed the absence of significant clustering of species-diagnostic and species-specific sequences in all the chromosomes of the four species studied. Both RAPD and ISSR markers showed similar patterns.


2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


Sign in / Sign up

Export Citation Format

Share Document