Operating stability and mechanical properties of type 5Kh2SF steels for hot-forming dies

1984 ◽  
Vol 26 (8) ◽  
pp. 613-615
Author(s):  
Yu. V. Shakhnazarov ◽  
A. S. Zhuravlev ◽  
E. D. Orlov ◽  
A. P. Vasil'ev
2017 ◽  
Vol 9 (2) ◽  
pp. 168781401769121 ◽  
Author(s):  
Dae-Cheol Ko ◽  
Dae-Hoon Ko ◽  
Jae-Hong Kim ◽  
Joon-Hong Park

In this study, the hot forming quenching process was investigated to improve the deficiencies that arise in materials subjected to conventional cold stamping, such as low formability and undesirable mechanical properties. The hot forming quenching process was mainly discussed in terms of formability and mechanical properties in this study and was first evaluated by preliminary tests. To examine formability, an evaluation was conducted using hot-tensile and hemispherical-dome stretching tests at temperatures of 350°C and 450°C, respectively. In addition, the mechanical properties of the formed part were predicted using quench factor analysis, which was based on the cooling temperature during the die quenching process. These preliminary test results were then used to predict the formability and hardness of the partition panel of an automotive part, where the analytical results indicated high performance of the hot forming quenching process, in contrast to conventional forming. Finally, the hot forming quenching experiment of the partition panel was carried out to validate the predicted results and the obtained formability and hardness values were compared with conventional forming at room temperature using T4 and T6 heat-treated sheets. The analytical and experimental results indicate that the hot forming quenching process is a very effective method for obtaining desirable formability and mechanical properties in the forming of aluminum sheets.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1483
Author(s):  
David Bombač ◽  
Peter Cvahte ◽  
Martin Balog ◽  
Goran Kugler ◽  
Milan Terčelj

An industrial press was used to consolidate compacted aluminum powder with a nominal diameter in the range of 1 µm. Direct and indirect hot-extrusion processes were used, and suitable process parameters were determined from heating conditions, ram speeds and billet temperatures. For comparison, a direct-extrusion press for hot extrusion of a conventional aluminum alloy AA 1050 was used. The extruded Al powder showed better mechanical properties and showed a thermal stability of the mechanical properties after annealing treatments. To increase the theoretical density of the directly extruded Al powder, single-hit hot-compression tests were carried out. Activation energies for hot forming were calculated from hot-compression tests carried out in the temperature range 300–580 °C, at different strain rates. Processing maps were used to demonstrate safe hot-working conditions, to obtain an optimal microstructure after hot forming of extruded Al powder.


2019 ◽  
Vol 944 ◽  
pp. 283-293
Author(s):  
Zhen Nan Cui ◽  
Yong Lin Kang ◽  
Guo Ming Zhu ◽  
Bao Shun Li ◽  
Quan Quan Qiu ◽  
...  

In this paper, a new type of automotive 1500 MPa grade hot-formed steel without boron but containing niobium was subjected to thermoforming experiments. The phase transition point and Continuous Cooling Transformation (CCT) curve of the hot-formed steel were measured by thermal dilatometer, and then the best austenitizing parameters was determined. The microstructure of the cold-rolled sheet and the hot-formed steel sheet were observed by electron microscopy. The microstructure of the steel sheet after hot forming was studied by X-ray diffraction (XRD) method to determine whether the microstructure after hot forming had residual austenite. The influence of residence conditions on its mechanical properties was studied. The experimental results has shown that the microstructure of the original cold-rolled sheet is mainly composed of ferrite and pearlite. After thermoforming, the basic microstructure are martensite and a small amount of ferrite; When the hot forming parameters is that 900 °C of the heating temperature, 3 min of the holding time, 8 s of the residence time, quenching temperature is the room temperature, the new 1500 MPa grade hot formed steel has the best mechanical properties that the tensile strength is 1519 MPa, the yield strength is 1060 MPa, the yield ratio is 0.73, and the elongation reaches 10.52%. The result shows that the new 1500 MPa grade hot formed steel could obtain excellent mechanical properties through a reasonable process under the premise of ensuring hardenability.


Author(s):  
A.V. Pchel'nikov ◽  
V.A. Filyakova ◽  
A.A. Sidorov

The effect of the macrostructure drawing after forming of blank made of high-temperature 901 alloy on the anisotropy of mechanical properties is studied. The effect of drawing on anisotropy is considered taking into account the unevenness of plastic deformation during upsetting and taking into account the deformation accumulated during the forging of the rod for the initial blank. The results of upsetting simulation and the test results of the samples mechanical properties cut in different directions of the blank fiber are presented.


2010 ◽  
Vol 129-131 ◽  
pp. 390-394
Author(s):  
Cheng Xi Lei ◽  
Zhong Wen Xing ◽  
Hong Ya Fu

The numerical simulation of hot-stamping process was carried out for UHSS square-cup parts, and the influence of dies temperature on the hot-stamping process was anlysised. Besides, through the microstructure analysis and mechanical properties testing of the formed parts, effects of dies temperature on microstructures and mechanical properties of hot-stamping square-cup parts were obtained. The experiment and simulation results showed that the mechanical properties of the UHSS are strongly dependent on the temperature, so the dies temperature is one of the most important parameters that have to be taken into account in designing the hot-forming dies and the hot-forming process.


2016 ◽  
Vol 83 ◽  
pp. 264-276 ◽  
Author(s):  
Konstantin Hofmann ◽  
Franziska Neubauer ◽  
Matthias Holzer ◽  
Vincent Mann ◽  
Florian Hugger ◽  
...  

Author(s):  
Huanhuan Li ◽  
Zhili Hu ◽  
Yizhe Chen ◽  
Qian Sun ◽  
Xianyan Zhou

Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 619
Author(s):  
Shaoyong Qin ◽  
Jinghong Song ◽  
Wuxiao Wang ◽  
Bingchu Mei ◽  
Weiwei Li ◽  
...  

Nd3+, Y3+: SrF2 transparent ceramics were successfully synthesized by two methods: hot-forming and hot-pressing techniques. The mechanical properties and optical properties of the hot-formed Nd3+, Y3+: SrF2 transparent ceramics were much better than that of single crystal. On the other hand, the transmittance of the hot-formed transparent ceramics with different deformation rate reached up to 90% at 1054 nm, which is superior to the hot-pressed ceramics. Furthermore, the fracture toughness of hot-formed Nd3+, Y3+: SrF2 transparent ceramics with the deformation rate of 51% reached up to 0.70 MPa m1/2, which is nearly 1.5 times higher than that of as-grown single crystal. The full width at half maximum (FWHM) of the hot-formed ceramic is larger than that of the single crystal at 1053 nm under continuous-wave (CW) laser operation. The thermal conductivity of Nd3+, Y3+: SrF2 single crystal and hot-formed ceramics were also discussed.


2014 ◽  
Vol 611-612 ◽  
pp. 1079-1087 ◽  
Author(s):  
Mikel Ortiz ◽  
Mariluz Penalva ◽  
Mildred J. Puerto ◽  
Petr Homola ◽  
Václav Kafka

The lightweight metal alloy Ti-6Al-4V is widely used in the aeronautical industry due to its excellent mechanical properties. However, it is known the difficulty to deform Ti-6Al-4V sheets at room temperature because of its microstructure conditions. The present work focuses on the evaluation of formability of Ti-6Al-4V sheets using hot single point incremental forming (SPIF) process which it seems appropriate to produce small batches of parts due to its flexibility as it allows a significant reduction of costs and lead times. In order to characterize the SPIF of Ti-6Al-4V under hot forming conditions, a set of forming trials evaluation tests was carried out. The obtained results have allowed identifying the key process features and have demonstrated the potential of the proposed approach to hot form of small amounts of Ti-6Al-4V parts.


Sign in / Sign up

Export Citation Format

Share Document