The ubiquitous localization of type I hexokinase in rat peripheral nerves, smooth muscle cells and epithelial cells

1984 ◽  
Vol 16 (10) ◽  
pp. 1113-1123 ◽  
Author(s):  
G. M. Lawrence ◽  
D. G. Walker ◽  
I. P. Trayer
2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alessandro Giuseppe Fois ◽  
Anna Maria Posadino ◽  
Roberta Giordo ◽  
Annalisa Cossu ◽  
Abdelali Agouni ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by an exacerbated fibrotic response. Although molecular and cellular determinants involved in the onset and progression of this devastating disease are largely unknown, an aberrant remodeling of the pulmonary vasculature appears to have implications in IPF pathogenesis. Here, we demonstrated for the first time that an increase of reactive oxygen species (ROS) generation induced by sera from IPF patients drives both collagen type I deposition and proliferation of primary human pulmonary artery smooth muscle cells (HPASMCs). IPF sera-induced cellular effects were significantly blunted in cells exposed to the NADPH oxidase inhibitor diphenyleneiodonium (DPI) proving the causative role of ROS and suggesting their potential cellular source. Contrary to IPF naive patients, sera from Pirfenidone-treated IPF patients failed to significantly induce both ROS generation and collagen synthesis in HPASMCs, mechanistically implicating antioxidant properties as the basis for the in vivo effect of this drug.


2016 ◽  
Vol 28 (6) ◽  
pp. 673 ◽  
Author(s):  
Yuki Yamamoto ◽  
Misa Kohka ◽  
Yoshihiko Kobayashi ◽  
Izabela Woclawek-Potocka ◽  
Kiyoshi Okuda

Endothelin (EDN) is a possible regulating factor of oviductal motility, which is important for the transport of gametes and embryo. To clarify the factors that control the secretion of EDN in the bovine oviduct, the expression of EDNs, EDN-converting enzymes (ECEs) and EDN receptors (EDNRs) were investigated. All isoforms of EDN (EDN1–3), ECE (ECE1 and ECE2) and EDNR (EDNRA and EDNRB) were immunolocalised in the epithelial cells of the ampulla and the isthmus. EDNRs were also immunolocalised in smooth-muscle cells. The mRNA expression of EDN2 and ECE2 was higher in cultured ampullary oviductal epithelial cells than in isthmic cells. The expression of EDN1, EDN2 and ECE2 in the ampullary tissue was highest on the day of ovulation. Oestradiol-17β increased EDN2 and ECE1 expression, while progesterone increased only ECE1 expression in cultured ampullary epithelial cells. These results indicate that EDNs are produced by epithelial cells and their target site is smooth-muscle and epithelial cells, and suggest that ovarian steroids are regulators of endothelin synthesis in ampullary oviductal epithelial cells.


1994 ◽  
Vol 3 (6) ◽  
pp. 481-492 ◽  
Author(s):  
Keiichi Kanda ◽  
Takehisa Matsuda

The effect of tensile stress on the orientation and phenotype of arterial smooth muscle cells (SMCs) cultured in three-dimensional (3D) type I collagen gels was morphologically investigated. Ring-shaped hybrid tissues were prepared by thermal gelation of a cold mixed solution of type I collagen and SMCs derived from bovine aorta. The tissues were subjected to three different modes of tensile stress. They were floated (isotonic control), stretched isometrically (static stress) and periodically stretched and recoiled by 5% above and below the resting tissue length at 60 RPM frequency (dynamic stress). After incubation for up to four wk, the tissues were investigated under a light microscope (LM) and a transmission electron microscope (TEM). Hematoxylin and eosinstained LM samples revealed that, irrespective of static or dynamic stress loading, SMCs in stress-loaded tissues exhibited elongated bipolar spindle shape and were regularly oriented parallel to the direction of the strain, whereas those in isotonic control tissues were polygonal or spherical and had no preferential orientation. In Azan-stained samples, collagen fiber bundles in isotonic control tissues were somewhat retracted around the polygonal SMCs to form a random network. On the other hand, those in statically and dynamically stressed tissues were accumulated and prominently oriented parallel to the stretch direction. Ultrastructural investigation using a TEM showed that SMCs in control and statically stressed tissues were almost totally filled with synthetic organelles such as rough endoplasmic reticulums, free ribosomes, Golgi complexes and mitochondria, indicating that the cells remained in the synthetic phenotype. On the other hand, SMCs in dynamically stressed tissues had increased fractions of contractile apparatus, such as myofilaments, dense bodies and extracellular filamentous materials equivalent to basement membranes, that progressed with incubation time. These results indicate that periodic stretch, in concert with 3-D extracellular collagen matrices, play a significant role in the phenotypic modulation of SMCs from the synthetic to the contractile state, as well as cellular and biomolecular orientation.


2020 ◽  
Vol 8 (8) ◽  
pp. 2164-2174
Author(s):  
Yuqing Niu ◽  
Guochang Liu ◽  
Chuangbi Chen ◽  
Ming Fu ◽  
Wen Fu ◽  
...  

We report the efficient application of a well-layered tubular amphiphilic nanofiber of a polyurethane copolymer (PU-ran) for the regulation the phenotypic expression of epithelial cells (ECs) and smooth muscle cells (SMCs) for vascularized urethral reconstruction.


Sign in / Sign up

Export Citation Format

Share Document