In vitro labeling of peroxisomal cholesterol with radioactive precursors

1987 ◽  
Vol 7 (11) ◽  
pp. 853-858 ◽  
Author(s):  
Eeva-Liisa Appelkvist

Peroxisomes isolated from rat liver were incubated with [3H]squalene and [3H]mevalonate and the subsequent incorporation of radioactivity into cholesterol studied. The isolated lipids became labeled after incubation with both precursors. In contrast to findings with microsomes, trypsin and detergent treatment of peroxisomes did not influence the rate of cholesterol synthesis. In addition, the luminal content of peroxisomes could alone mediate this synthetic process. Upon treatment of rats with various inducers of peroxisomes and of the endoplasmic reticulum, as well as upon feeding with cholesterol and cholestyramine, large differences in the pattern of in vitro incorporation of [3H]mevalonate into the cholesterol of peroxisomes and microsomes were observed. Injection of this precursor also resulted in high initial labeling of peroxisomal cholesterol in vivo. These experiments indicate that cholesterol synthesis may also occur in peroxisomes.

1977 ◽  
Vol 5 (4) ◽  
pp. 1029-1032 ◽  
Author(s):  
OLIVIERO DANNI ◽  
BARBARA C. SAWYER ◽  
TREVOR F. SLATER

1974 ◽  
Vol 142 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Susan C. Davison ◽  
Eric D. Wills

1. Phenobarbitone injection did not affect the concentration of phospholipids in the liver endoplasmic reticulum, but it increased the rate of incorporation of [32P]orthophosphate into the phospholipids. 20-Methylcholanthrene caused a transient increase in total phospholipid but a decrease in the turnover rate of the phospholipids. 2. Incorporation of [32P]orthophosphate into phosphatidylcholine, compared with that into phosphatidylethanolamine, was increased by phenobarbitone injection but decreased by 20-methylcholanthrene injection. 3. The activity of S-adenosylmethionine–phosphatidylethanolamine methyltransferase increased 12h after phenobarbitone injection, when incorporation of [32P]orthophosphate into phosphatidylcholine was a maximum, but at other times, and after 20-methylcholanthrene injection, the activity of the enzyme did not correlate with the rate of phosphatidylcholine synthesis. 4. [14C]Glycerol was incorporated more rapidly into phosphatidylcholine than into phosphatidylethanolamine, whereas [32P]orthophosphate and [14C]ethanolamine were incorporated more rapidly into phosphatidylethanolamine than into phosphatidylcholine. 5. Incorporation of [32P]orthophosphate into phosphatidylethanolamine of liver slices incubated in vitro was much more rapid than into phosphatidylcholine, and incorporation into phosphatidylcholine was markedly stimulated by addition of methionine to the medium. Changes in the incorporation of [32P]orthophosphate into phospholipids observed in vivo after injection of phenobarbitone or methylcholanthrene could not be reproduced in slices incubated in vitro. 6. It is concluded that phenobarbitone injection causes an increased rate of turnover of total phospholipids in the endoplasmic reticulum and an increased conversion of phosphatidylethanolamine into phosphatidylcholine, whereas 20-methylcholanthrene injection depresses both the turnover rate of total phospholipids and the formation of phosphatidylcholine.


1974 ◽  
Vol 140 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Néstor F. González-Cadavid ◽  
Carmen Sáez De Córdova

The functional distinction of membrane-bound and free polyribosomes for the synthesis of exportable and non-exportable proteins respectively is not so strict as was initially thought, and it was therefore decided to investigate their relative contribution to the elaboration of an internal protein integrated into a cell structure. Cytochrome c was chosen as an example of a soluble mitochondrial protein, and the incorporation of [14C]leucine and δ-amino[14C]laevulinate into the molecule was studied by using different ribosomal preparations from regenerating rat liver. A new procedure was devised for the purification of cytochrome c, based on ion-exchange chromatography combined with sodium dodecyl sulphate–polyacrylamide-gel electrophoresis. In spite of cytochrome c being a non-exportable protein, the membrane-bound polyribosomes were at least as active as the free ribosomes in the synthesis in vitro of the apoprotein and the haem moiety. The detergent-treated ribosomes could also effect the synthesis of cytochrome c, although at a lower rate. Since in liver more than two-thirds of the ribosomes are bound to the endoplasmic-reticulum membranes, it is considered that in vivo they are responsible for the synthesis of most of the cytochrome c content of the cell. This suggests that in secretory tissues the endoplasmic reticulum plays a predominant role in mitochondrial biogenesis, although free ribosomes may participate in the partial turnover of some parts of the organelle. The hypothesis on the functional specialization of the different kinds of ribosomes was therefore modified to account for their parallel intervention in the synthesis of proteins associated with membranous structures.


2000 ◽  
Vol 33 (4) ◽  
pp. 601-608 ◽  
Author(s):  
Shwu-Bin Lin ◽  
Li-Ching Wu ◽  
Siao-Ling Huang ◽  
Hui-Lun Hsu ◽  
Sung-Hwa Hsieh ◽  
...  

2008 ◽  
Vol 46 (01) ◽  
Author(s):  
F Moriconi ◽  
H Christiansen ◽  
H Christiansen ◽  
N Sheikh ◽  
J Dudas ◽  
...  

2019 ◽  
Vol 70 (2) ◽  
pp. 718-720
Author(s):  
Lucia Corina Dima-Cozma ◽  
Sebastian Cozma ◽  
Delia Hinganu ◽  
Cristina Mihaela Ghiciuc ◽  
Florin Mitu

Matrix metalloproteinases (MMPs) are the primary mediators of extracellular remodeling and their properties are useful in diagnostic evaluation and treatment. They are zinc-dependent proteases. MMPs have been involved in the mechanisms of atherosclerosis in various arterial areas, ischemic heart disease and myocardial infarction, atrial fibrillation and aortic aneurysms. Recently, MMP9 has been implicated in dyslipidemia and cholesterol synthesis by the liver. Increased MMP expression and activity has been associated with neointimal arterial lesions and migration of smooth muscle cells after arterial balloon dilation, while MMP inhibition decreases smooth muscle cell migration in vivo and in vitro.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


2021 ◽  
Vol 165 ◽  
pp. 44
Author(s):  
Eleonora Cremonini ◽  
Maëlys Rouget ◽  
Solenne Arredi ◽  
Charlotte Devulder-Mercier ◽  
Robin Cellier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document