Role of plastic deformation in the structure formation of ceramic materials

1992 ◽  
Vol 31 (3) ◽  
pp. 260-266
Author(s):  
G. S. Oleinik
2014 ◽  
Vol 1013 ◽  
pp. 23-30 ◽  
Author(s):  
Nina Koneva ◽  
Natal'ya Popova ◽  
Marina Fedorischeva ◽  
Eduard Kozlov

Effect of a size of closed structural formation on accumulation of dislocation density and its components at plastic deformation is studied. Main attention is given to a role of a division of boundaries of a different type. Structural formation sizes are determined and different parameters of structure defining micro-and mezolevel at development of plastic deformation mechanisms are distinguished. A role of statistically stored dislocations (SSD) and geometrically necessary dislocations (GND) for defect structure formation of a material is examined. It is determined that than a size of closed structural formation is less than that a component of GND is larger and component of SSD is less. The work is based on results of TEM reserches of a structure of deformed materials.


The authors' methodic for assessing the role of chemical and physic-chemical factors during the structure formation of gypsum stone is presented in the article. The methodic is also makes it possible to reveal the synergistic effect and to determine the ranges of variation of controls factors that ensure maximum values of such effect. The effect of a micro-sized modifier based on zinc hydro-silicates on the structure formation of building gypsum is analyzed and corresponding dependencies are found. It is shown that effects of influence of modifier on the properties of gypsum compositions are determined by chemical properties of modifier. Among the mentioned properties are sorption characteristics (which depend on the amount of silicic acid and its state) and physicochemical properties - the ability to act as a substrate during crystal formation. The proposed method can also be extended to other binding substances and materials. This article contributes to the understanding of the processes that occur during the structure formation of composites, which will make it possible to control the structure formation in the future, obtaining materials with a given set of properties.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1043
Author(s):  
Vitor Bonamigo Moreira ◽  
Anna Puiggalí-Jou ◽  
Emilio Jiménez-Piqué ◽  
Carlos Alemán ◽  
Alvaro Meneguzzi ◽  
...  

Herein, the influence of the substrate in the formation of zirconium oxide monolayer, from an aqueous hexafluorozirconic acid solution, by chemical conversion and by electro-assisted deposition, has been approached. The nanoscale dimensions of the ZrO2 film is affected by the substrate nature and roughness. This study evidenced that the mechanism of Zr-EAD is dependent on the potential applied and on the substrate composition, whereas conversion coating is uniquely dependent on the adsorption reaction time. The zirconium oxide based nanofilms were more homogenous in AA2024 substrates if compared to pure Al grade (AA1100). It was justified by the high content of Cu alloying element present in the grain boundaries of the latter. Such intermetallic active sites favor the obtaining of ZrO2 films, as demonstrated by XPS and AFM results. From a mechanistic point of view, the electrochemical reactions take place simultaneously with the conventional chemical conversion process driven by ions diffusion. Such findings will bring new perspectives for the generation of controlled oxide coatings in modified electrodes used, as for example, in the construction of battery cells; in automotive and in aerospace industries, to replace micrometric layers of zinc phosphate by light-weight zirconium oxide nanometric ones. This study is particularly addressed for the reduction of industrial waste by applying green bath solutions without the need of auxiliary compounds and using lightweight ceramic materials.


2018 ◽  
Vol 667 ◽  
pp. 17-24 ◽  
Author(s):  
Thorsten Wagner ◽  
Daniel Roman Fritz ◽  
Zdena Rudolfová ◽  
Peter Zeppenfeld

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1077
Author(s):  
Romisuhani Ahmad ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Wan Mastura Wan Ibrahim ◽  
Kamarudin Hussin ◽  
Fakhryna Hannanee Ahmad Zaidi ◽  
...  

The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm−1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.


2021 ◽  
pp. 22-32
Author(s):  
A.M. Shestakov ◽  

Shows the scientific approaches of various authors to the study of the microstructure of ceramics, the purpose of which is to elucidate its structural organization at the micro- and nanoscale, as well as the influence of the microstructure on the complex of material properties. Various instrumental methods for studying ceramics (NMR spectroscopy, electron microscopy, х-ray structural analysis, etc.) are considered, the permissible capabilities of research methods and analysis of the results obtained with their correct interpretation are shown. The special role of theoretical modeling in understanding the structure of the considered ceramic materials is noted.


2021 ◽  
Vol 316 ◽  
pp. 153-158
Author(s):  
Boris M. Goltsman ◽  
Lyubov A. Yatsenko ◽  
Natalia S. Goltsman

The article discusses the peculiarities of the "water-glass – glycerol" foaming mixture components interaction during foam glass synthesis. The important role of the foaming additive type in the foam glass porous structure formation was described, the main foaming substances were listed. The obtaining and researching technology of the samples was described, the compositions of the initial batches using the "water-glass – glycerol" mixture were developed. It was shown that a material with a highly porous structure and density below 500 kg/m3 can be obtained only with the combined introduction of water-glass and glycerol. In this case, mixtures with a predominance of water-glass in the foaming mixture possess optimal properties. Using DSC, it was shown that the addition of water-glass to the mixture completely eliminates the evaporation of glycerol at lower temperatures and intensifies its combustion at higher temperatures. Thus, the addition of water-glass to the glycerol-based foam glass batch allows glycerol to be saved up to higher temperatures that increases the resulting material porosity.


Sign in / Sign up

Export Citation Format

Share Document